Aspectos trofodinámicos de la ecología

Slides:



Advertisements
Presentaciones similares
¿Qué hora es? ¿Cómo decimos la hora en español? Son las ______. Es la _______. Para decir la hora… How do we say the time in Spanish To tell time. It.
Advertisements

Control en cascada.
Spanish Interrogatives. Who? ¿Quién? Who? (multiple people) ¿Quiénes?
Hunger… El hambre... What can do you as a person in abundance? ¿Qué puede hacer usted como una persona en la abundancia?
Los números ordinales (first, second, third…). Los números ordinales  1—primero*  2—segundo  3—tercero*  4—cuarto  5—quinto  6—sexto  7—séptimo.
Stem-changing verbs.
1 Estimación de los aportes en régimen natural en el Bajo Ebro Estimation of Virgin Flows in the Lower Ebro River Francesc Gallart, Pilar Llorens Instituto.
Meteorology: the study of the entire atmosphere, including weather.
Lesiones orales y estado inmunológico de pacientes VIH+ expuestos o no al consumo de alcohol. Blanca Lucía Acosta de Velásquez Elisa María Pinzón Gómez.
Health Products Beauty Products Diet/Weight loss Financial Freedom.
1 – 999,999,999.
Cómo compartimos el planeta / Sharing the Planet/Los Organismos Vivos y  Los Organismos No Vivos: Por: Jeena Clavijo.
The Normal Distribution To calculate the probability of a Normal distribution between a and b:
Notes #18 Numbers 31 and higher Standard 1.2
A:B: Parasite, PreyParasite/Host #1 A tick sucks blood from a dog. In this relationship, The tick is the ___________ and the dog is the ___________?
Some “boolean” concepts The following series of slides is not supposed to give you answers, but to provide substance for thought and ponder. The placenta.
BANCO DE LA CIUDAD DE BUENOS AIRES Federico Sturzenegger President Banco Ciudad de Buenos Aires Ernesto Talvi Executive Director CERES Unveiling monetary.
Redes Tróficas.
¿A qué hora comen el desayuno? Generally, breakfast is at the same time we eat it here in the Estados Unidos.
MORE CONVERSATION TOOLS
Capítulo 4. Infinitives in Spanish end in –ar, -er, and – ir The conjugated infinitive is often followed by another infinitive or infinitive phrase/ expression.
What has to be done today? It can be done in any order. Make a new ALC form Do the ALC Get two popsicle sticks Get 16 feet of yarn. That is 4 arms width.
12- 9 Solve Multi-Step Eqns Solve using the properties and inverse operations. Check your answers Ann earns 1.5 times her normal.
The organization of the human body
FÍSICA DE SEMICONDUCTORES MOBILIDAD Y CONDUCTIVIDAD EN SEMICONDUCTORES
El verbo ser y adjetivos en español INTRODUCCIÓN Y CONTINUACIÓN DEL GÉNERO… Ojalá que estuviera en la playa…. I wish I were at the beach…. :)
Digital Photography: Selfie Slides Liliana Martinez 10/27/14 4b.
Students of the third cycle of primary have been studying the topic of Nutrition.
ALC 155 miércoles el 25 de mayo. Bienvenida Sientense SS – lado a lado Uno lee las preguntas en voz alta la otra persona contesta.
THERE ARE 4 STATES OF MATTER 1. SOLIDS-THE MOVEMENT OF PARTICLES IN SOLIDS IS VERY SLOW. IN FACT, WE CAN’T SEE THEM MOVE…YET, THEY DO. SOLIDS HAVE A DEFINITE.
¿Qué haces en la escuela? Question words, objects, yo-go’s.
Centro de Investigación en Energía, UNAM Centro de Investigación en Energía, UNAM Jorge M. Islas Samperio Simposium “Transición Energética y Oportunidades.
Time in Spanish Nivel 1. Telling time inSpanish  Time is not TOO different in Spanish.  It is formatted the way time used to be told in English.  It.
Water Conservation: water conservation is very important to the world, not only because we waste it when we don’t need it, but because were wasting water.
Tecnología y Estructura de Costos. Technologies u A technology is a process by which inputs are converted to an output. u E.g. labor, a computer, a projector,
Digital Photography: Selfie Slides Your Name Date Class Period.
Fisión nuclear Cuando ciertos elementos son golpeadas con neutrones, puede dividir el núcleo en fragmentos más pequeños. – Sólo se produce en uranio 235.
Digital Photography: Selfie Slides Traci Armstrong 10/23/14 6 th period.
CONJUGATION.
Ecology- The study of living organisms and their interaction with the environment Food Chain vs. Food Web.
Orden del día 09/18/ Warm-up- 2 questions, 2 minutes each 2.Intro to Regions 3.Important World Features Chart & Notes 4.World Map Activity 1.Part.
JUEVES, EL 10 DE SEPTIEMBRE LT: I WILL RECOGNIZE SOME NEW VOCABULARY WORDS. Go over tests & retake procedures Interpretive Assessment: numbers & alphabet.
ALC 155 jueves el 26 de mayo. Bienvenida I can give and follow directions using, our map and drawings of buildings in the room.
10.4 Adverbs ANTE TODO  Adverbs are words that describe how, when, and where actions take place.  They can modify verbs, adjectives, and even other adverbs.
Cadenas alimentarias y dinámica trófica La cantidad de energía que se transfiere entre los niveles sucesivos de una cadena alimentaria es, en promedio,
Learning Target: I will be able to determine the Difference between different ecosystems around the world.
FLOW OF ENERGY AND MATTER (FLUJO DE ENERGÍA Y LA MATERIA).
Cellular Respiration Respiracion Celular
Commands Notes Powerpoint ¡Escucha como usar los mandatos! ©Spanishplans 2012.
Matter and changes in state Classification of Matter Physical and Chemical Properties More questions
Operations Charts Keep these operations charts posted by the wall you usually work out math word problems. Print them in color and paste them on the same.
Aim: How have humans negatively affected diversity in the environment? Do Now: What is meant by carrying capacity? What is the carrying capacity of the.
Aim: How can we describe the structure and function of cell organelles
Aim: How are molecules recycled through an ecosystem? Como son las moleculas recicladas en un ecosistema?
¿New media? Lev Manovich It is responsible for one of the works of reference for the interpretation of the new media. “The language of new media (2001)”
Aim: How do ecosystems change over time?Como cambian los ecosistemas a lo largo del tiempo?
Aim: How do organisms have different roles in the environment? Cuales son las diferentes funciones de los organismos en el medio ambiente?
LOS VERBOS REFLEXIVOS. WRITE: What is a reflexive verb? A reflexive verb describes when a person doing an action is also receiving the action.
Por: Hugo G. crende. Castellano EnglishCastellanoEnglish.
El medio ambiente, se caracteriza fundamentalmente por afectar o condicionar especialmente las circunstancias de la vida que nos rodea, como: agua,
PARTS OF AN ESSAY 1. INTRODUCTION 2. DEVELOPMENT 3. CONCLUSION OR SUMMARY.
Lunes, 5/10/15  What is the purpose of a subject pronoun?  Give at least one example of a subject pronoun in English.
EQUILIBRIUM OF A PARTICLE IN 2-D Today’s Objectives: Students will be able to : a) Draw a free body diagram (FBD), and, b) Apply equations of equilibrium.
¿Cómo funcionan los Ecosistemas?
First Grade Dual High Frequency Words
CORALS ARE DYING WHAT ARE CORALS AND WHAT IS HAPPENENING TO THEM ? WHY WE CHOSE TO TALK ABOUT THIS? We choose this topic because we do find the ocean a.
Genentech A Discussion Winter 2018Joseph Milner, RSM54011.
NOMBRE: FRANSHESCA URREGO FERNANDEZ GRADO:8ª PROFESORA: LIDA ROMERO INSTITUCION EDUCATIVA JOSE EUSTACIO RIVERA.
THE ATOMIC STRUCTURE OF MATTER
Food Webs/Chains and Energy Pyramids
Transcripción de la presentación:

Aspectos trofodinámicos de la ecología

Cadenas alimentarias y dinámica trófica La cantidad de energía que se transfiere entre los niveles sucesivos de una cadena alimentaria es, en promedio, el 10%

Producción secundaria La producción primaria es relativamente fácil de medir. La producción secundaria, sin embargo, es más difícil de estimar debido a tiempos generacionales más largos, distribución discontinua de las poblaciones, abundancias poblacionales menores.

Producción secundaria A través de la obtención de datos de campo sobre la abundancia de zooplancton y peces. A través de la obtención de datos experimentales sobre la energética del zooplancton y peces. Utilizando estimados de producción primaria y conocimientos sobre trofodinámica: ---estimaciones indirectas: conociendo cuanta energía puede ser transferida entre cada nivel trófico.

Eficiencia ecológica Eficiencia con la que la energía puede ser transferida entre niveles tróficos sucesivos. Cantidad de energía que se extrae de un nivel trófico λ0 dividida entre la energía que entra al nivel trófico λ1 Difícil de medir –puede ser estimada a través del uso de las eficiencias de transferencia

Eficiencia de transferencia Et = Eficiencia de transferencia Pt = productividad del nivel trófico λt Pt-1 = productividad del nivel trófico λt-1 Et = Pt/Pt-1 * No todos los organismos se transfieren… Algunos mueren por otras causas distinitas a la depredación (y entran al ciclo del detritus)

Eficiencia de transferencia ~20% del fitoplancton a los herbivoros 10-15% en niveles sucesivos La pérdida de energía entre los niveles tróficos llega a ser del 85 al 90%, principalmente debida a la respiración

How many trophic levels? ranges from 2 to 6 levels less in coastal and/or upwelling areas more in open ocean (oligotrophic areas) number of trophic levels is dependent on the size of phytoplankton phytos tend to be large in upwelling regions (WHY?) and small in open ocean areas (WHY?)

Estimating Secondary Productivity Once the trophic structure is known, secondary production can be estimated: P(n+1) = P1En P is productivity at the (n+1)th trophic level n is number of trophic transfers (trophic levels minus one) P1 is annual primary production E is ecological efficiency

Weaknesses E is very sensitive: by doubling E, secondary production can increase 10-fold food chain versus food web - trophic transfer is not as simple as equations imply

AQUÍ VAMOS Productivity Productivity refers to biological activity/interaction in the environment Measuring productivity numbers or biomass often measured as gC/m2/yr oceanic average productivity = 100 gC/m2/yr rates of growth (or excretion, grazing, sinking, etc.) organism interactions with the environment and/or each other

Consumer - Food Interactions

Productivity Productivity = growth rate - loss rate For primary productivity growth rate varies with light, nutrients, and temperature loss rate includes respiration, grazing, sinking, and death For secondary productivity growth rate varies with ingestion of food loss rate includes respiration, egestion, excretion, and death

Grazing responsible for most of phytoplankton loss other loss mechanisms are not really a factor unless grazing does not occur grazing can have no impact, prevent a bloom, or terminate a bloom (depending on timing) 90% of carbon and energy is lost at each step of trophic pyramid material loss due to respiration, DOC, and POC DOC and POC utilized by microbial loop, detritivores, etc.

Global Patterns of Productivity Fish production.

Measuring Secondary Productivity in some cases, primary production may not be a good indicator of production at higher trophic levels eutrophic systems (PP>>grazing) HABs/selective grazing in such cases, excess primary production may enter the microbial-detritus circuit

Top-down Estimates relying solely on fisheries statistics to “fill in the blanks” for lower trophic levels can lead to underestimates omission of production of competing, unharvested species

Zooplankton Productivity defined as total amount of new production within a time frame, regardless of whether all individuals survive through the whole time frame B = Xw B = biomass, X = number of individuals, w = average weight of an individual

Zooplankton Productivity Pt = (X1-X2)((w1+w2)/2) + (B2 - B1) Pt = production between time intervals t1 and t2 B2 - B1 refers to increase in biomass the remainder of the equation refers to biomass produced, but lost, during the time interval

Zooplankton Productivity ideally, one would study a single cohort of a population over time cohort = one identifiable generation of progeny of a species practically impossible to do cannot follow and sample same water mass long enough to get meaningful results

Zooplankton Productivity cohort studies focus on following changes in relative numbers and weights of distinctive life stages of abundant species (copepods)

Zooplankton Productivity productivity may change over time zooplankton stages grow at different rates rates vary over the course of a year in temperate regions, growth will be greatest in the spring when food is plentiful and zooplankton are young productivity may be negative in the winter as individuals utilize food reserves rather than eating

Experimental Biological Oceanography laboratory-scale experiments enclosed ecosystem experiments computer simulations

Laboratory-scale Experiments individual organisms in small volumes of water food requirements transfer efficiencies mainly herbivorous copepods (and phytos)

Laboratory-scale Experiments G = R - E - U - T G = Growth R = ration of ingested food E = egested fecal material U = excretory products (e.g., urea and ammonia) T = respiration

Laboratory-scale Experiments excretory products (U) are usually negligible, so equation is often simplified to AR = T + G A = proportion of food actually utilized A = (R - E)/R

Assimilation Rates assimilation rates are highest for carnivores (80 - >90%), lower for herbivores (50 - 80%), and lowest for detritivores (<40%) WHY?

Feeding Rate Estimates a known number of zooplankton (1-10s) and a known concentration of food (phytoplankton) are put into a culturing container (kept in the dark - WHY?) and the zooplankton are allowed to feed food particle concentrations are remeasured at a later time to determine grazing rates

Estimating Ingestion (R) grazing rates are related to food concentrations Michaelis-Menton kinetics R = Rmax(1 - e -kp) k = grazing constant p = prey density

µmax grazing rate ½ µmax Ko Kn food concentration

species B dominates species A dominates grazing rate [phytoplankton]

Estimating Respiration T = respiration rate can be determined in closed-bottle experiments related to temperature and size of individual

Estimating Egestion (E) fecal matter produced copepods produce fecal pellets collect them, count them, and weigh them!

Estimating Growth Growth (G) can be determined once R, E, A, and T are known Once G is known, growth efficiency can be estimated: gross: K1 = G/R x 100% net: K2 = G/AR x 100%

Growth Efficiency temperature and food concentration will affect growth efficiency efficiency changes with age net growth efficiency for zooplankton generally vary between 30 - 80% terrestrial animals vary between 2 - 5%

Growth Efficiency growth efficiency estimations allow us to determine the food required to produce certain animals at different trophic levels still laboratory-based