Procesos catabólicos aerobios

Slides:



Advertisements
Presentaciones similares
Respiración aerobia de la glucosa Catabolismo de lípidos
Advertisements

METABOLISMO DEL PIRUVATO
GLUCOLISIS Dra. Judith García de Roras Salón 207 Dra. Judith de Rodas
GLUCOLISIS CICLO DE KREBS TRANSPORTE DE ELECRONES FERMENTACIÓN
EL CATABOLISMO LÍPIDOS PROTEINAS.
CATABOLISMO AEROBICO Y ANAEROBICO
16.- LAS MITOCONDRIAS.
CITOSOL: Componentes y función
RESPIRACIÓN Y FOTOSÍNTESIS
RESPIRACIÓN CELULAR Es el proceso por el cual la energía química de las moléculas de "alimento" es liberada y parcialmente capturada en forma de ATP Los.
RESPIRACIÓN CELULAR Es el proceso por el cual la energía química de las moléculas de "alimento" es liberada y parcialmente capturada en forma de ATP Los.
Un cambio que hace posible la vida
Metabolismo celular.
FERMENTACION.
16.- LAS MITOCONDRIAS.
CITOSOL: Componentes y función
CITOSOL: Componentes y función
Catabolismo Fermentación Respiración Aerobia Anaerobia
RESPIRACIÓN CELULAR.
TEMA 6.3 EL METABOLISMO.
Enzimas Fotosíntesis y sus efectos Digestión Respiración celular
Fuente de energía para las células
Metabolismo celular Respiración celular: Glucólisis, ciclo de Krebs y cadena respiratoria. Fermentación.
Respiración celular Conversión energética Mitocondrias Cloroplastos
Glucolisis.
LA RESPIRACIÓN CELULAR
Catabolismo.
Laboratorio No. 8 Respiración celular Instructora Andrea Arias García
LA RESPIRACIÓN CELULAR
RESPIRACIÓN CELULAR Unidad 10
Q.F.I. Ma. Guadalupe Pimentel Correa.
OBTENCIÓN DE ENERGIA Y METABOLISMO EN LOS SERES VIVOS
CATABOLISMO POR RESPIRACIÓN
GLUCOLISIS Y FERMENTACION
Metabolismo Aldolasa Biología ITESM MC Pedro Ayala.
LA RESPIRACIÓN CELULAR
CITOSOL: Componentes y función
Los seres vivos y sus procesos energéticos
16.- LAS MITOCONDRIAS.
La fábrica celular. Misión: obtener energía La célula como unidad básica de los seres vivos: La fábrica celular. Misión: obtener energía.
OBTENCIÓN DE ENERGÍA RESPIRACIÓN CELULAR: AEROBIA Y ANAEROBIA.
Fuente de energía para las células
RESPIRACIÓN CELULAR.
LA RESPIRACIÓN CELULAR
Respiración celular TEMA 3.
Respiración Celular.
METABOLISMO GLUCÓLISIS Y RESPIRACIÓN CELULAR
DEGRADACION DE LOS AZUCARES
Respiración celular y fermentación
TEMA 13: CATABOLISMO DE GLÚCIDOS Y LÍPIDOS.
RESPIRACIÓN Y FOTOSÍNTESIS
CATABOLISMO DE LA GLUCOSA
TEMA 11 CATABOLISMO AERÓBICO Y ANAERÓBICO
RESPIRACIÓN CELULAR (RC)
TEMA 5: 1. Concepto de nutrición. Nutrición autótrofa y heterótrofa. 2
Respiración celular Objetivo:
NUTRICIÓN Y METABOLISMO
Rutas que cosechan energía
FASE PRELIMENAR.
METABOLISMO CELULAR. Durante el metabolismo la materia y la energía se transforman en el interior de las células, para generar energía y mantener las.
TEMA 13 CATABOLISMO.
Mecanismos de obtención de energía en heterótrofos
OXIDACION DE LA GLUCOSA POR VIA AEROBICA
RESPIRACIÓN CELULAR.
UNIDADES METABOLISMO.
1) Respiración Celular. 2) Fotosíntesis.
Respiración celular Alumnos: Joaquin Morales Angel Moreno Curso: 8ªA
Tema 4. La fábrica celular. Misión: obtener energía.
1 Bloque 1: Metabolismo Tema 1: Los biocatalizadores y enzimas Tema 2: El metabolismo anabólico Tema 3: El metabolismo catabólico Realizado Prof: Alberto.
Metabolismo I : Catabolismo
Transcripción de la presentación:

Procesos catabólicos aerobios Aminoácidos Glúcidos Grasas Desaminación Glucólisis Beta oxidación Acido pirúvico Acetil coA Ciclo de Krebs Cadena respiratoria

Las reacciones de la glucólisis se llevan a cabo en el citoplasma. GLUCOLISIS La glucólisis ("rotura de glucosa") es la secuencia de reacciones que convierten una molécula de glucosa (seis carbonos) en dos moléculas de piruvato (tres carbonos) produciendo ATP. Cada reacción es regulada por una enzima específica y en el proceso total hay una ganancia neta de dos moléculas de ATP. Las reacciones de la glucólisis se llevan a cabo en el citoplasma. Los ingredientes necesarios, como ADP, NAD+ y fosfato, se encuentran libremente en el citoplasma y se utilizan conforme se hace necesario. La glucólisis no requiere de oxígeno y puede realizarse en condiciones aerobias o anaerobias.

Balance energético de la glucólisis Glucosa + 2 ADP + 2 Pi + 2 NAD+ 2 piruvato + 2 ATP + 2 NADH + 2 H+ + 2 H2O

La respiración: el ciclo de Krebs Este ciclo es la ruta final de la oxidación del piruvato, ácidos grasos y cadenas de carbono de los aminoácidos. Se lleva a cabo en la mitocondria. Cada reacción es catalizada por una enzima específica. En la mayoría de los procariotas las enzimas del ciclo se localizan en el citosol, en tanto que en los eucariotas están dentro de las mitocondrias. Es necesaria una transformación del piruvato para que se inicie el proceso.

Balance energético del ciclo de Krebs Acido Pirúvico Acetil CoA 4 NADH 1 FADH2 1 GTP Como se obtienen 2 piruvatos por cada molécula de glucosa: 2 Acidos Pirúvicos 2 Acetil CoA 8 NADH 2 FADH2 2 GTP

Transporte electrónico Rendimiento energético del catabolismo por respiración de la glucosa: Proceso Citoplasma Matriz mitocondrial Transporte electrónico Total Glucolisis 2 ATP 2 NADH FADH2 2 x (2ATP) 4 ATP Respiración Ac. Piruvico a Ac. CoA 2 X (1NADH) 2 x (3ATP) 6 ATP Ciclo de Krebs 2 X (1 GTP) 2 X(3 NADH) 2 X(1 FADH2) 6 x (3ATP) 18 ATP Balance energético global (por molécula de glucosa) 36 ATP

La fermentación alcohólica Es la transformación de ácido pirúvico en etanol y CO2. En una primera etapa se realiza la glucólisis y se transforma la glucosa en ácido pirúvico, y en la etapa siguiente se realiza la fermentación alcohólica, transformándose el ácido pirúvico en etanol y CO2, reoxidando el NADH a NAD+. La fermentación alcohólica se realiza gracias a enzimas contenidas en levaduras del género Saccharomyces, que son anaerobias facultativas. Dependiendo de la especie de levadura se puede llegar a obtener cerveza, ron (S. cerevisiae), vino (S. ellypsoideus), sidra (S. apiculatus) y pan (variedad purificada de S. cerevisiae)

Dependiendo de la especie de levadura se puede llegar a obtener cerveza, ron (S. cerevisiae), vino (S. ellypsoideus), sidra (S. apiculatus) y pan (variedad purificada de S. cerevisiae)

La fermentación láctica En esta fermentación se forma ácido láctico a partir de la degradación de la glucosa. Esta fermentación se da cuando determinados microorganismos inician la fermentación de la lactosa de la leche, lo que produce el agriamiento de ésta y la coagulación de la proteína caseína. También se produce en las células musculares de los animales cuando no hay suficiente oxigeno para efectuar un sobreesfuerzo físico y el ácido pirúvico procedente de la glucólisis no puede oxidarse de manera aerobia y se transforma en ácido láctico. Si el sustrato es la lactosa, primero se hidroliza en una molécula de glucosa y otra de galactosa, la cual posteriormente se transforma en glucosa. Luego, las dos glucosas continúan el proceso antes descrito para las células musculares.

Los microorganismos que realizan esta fermentación son las bacterias de las especies Lactobacillus casei, L. bulgaricus, Streptococcus luctis y Leuconostoc citrovorum, obteniéndose de ello productos derivados de la leche como el queso, el yogur y el kéfir.