2. CONDUCCIÓN UNIDIMENSIONAL EN ESTADO ESTABLE.

Slides:



Advertisements
Presentaciones similares
Campo Eléctrico en placas Planas y Paralelas
Advertisements

Transferencia de Calor
TRANSFERENCIA DE CALOR
LECCIÓN 3 Propiedades de transporte: ecuación de Boltzmann
SECADO.
COORDENAS CILINDRICAS
OPERACIONES UNITARIAS Ing. William Teneda
Transferencia de calor por convección
ING Roxsana Romero A Convección.
TERMOTECNIA. 1 | 17 TRANSFERENCIA DE CALOR EN RÉGIMEN ESTACIONARIO.
Electrodinámica M. En C, Cindy Rivera.
INTERCAMBIADORES DE CALOR
Función Térmica HACER HABITABLE EL MEDIO NATURAL: protegernos de las inclemencias del clima El CONFORT :Concepto reciente --- relacionado con las grandes.
Departamento de Física Aplicada. UCLM
Transferencia de Calor
LINEAS DE TRANSMISION.
aire acondicionado calefaccion ventilacion Por: Marisol Rincón Espejo
TERMODINÁMICA Estudio de la energía puesta en juego en los procesos
Calentamiento de los transformadores
Ejercicio pared simple
Corriente eléctrica Corriente eléctrica Resistencia y Ley de Ohm
Ejercicio de evaluación 1 Una vivienda unifamiliar de 20x 10 m 2 en planta y 2,4 m de altura tiene un sistema de calefacción por suelo mediante tubería.
La Termodinámica Hasta ahora no mencionamos el campo de la termodinámica. Sin embargo es fundamental para el entendimiento de la física. Se mencionó que.
TRANSMISION DEL CALOR JAVIER DE LUCAS.
Norida Joya Nataly Cubides
Superficies extendidas (aletas)
CAPITULO 9 CICLO RANKINE DE POTENCIA MEDIANTE VAPOR
• Resistencia y Temperatura • Energía Eléctrica y Potencia
TRANSFERENCIA DE CALOR
Flujo Externo Es el que se da cuando un objeto se expone a un flujo no confinado. Se verán los problemas de convección forzada de baja velocidad sin que.
TEMA I. EL PROCESO DE LA CONDUCCIÓN DEL CALOR
Transporte de Calor por Conducción
PERDIDAS DE CALOR 1.- PÉRDIDAS DE CALOR A TRAVÉS DE LAS PAREDES.
ECUACIÓN DE CONDUCCIÓN DE CALOR Por: Ing. Luis L. López Taborda
Sobre un vidrio Hay que observar que para este caso la reflectividad es de 0.08, la absortividad es de 0.12, y la transmitividad es de 0.8.
Capacidad Habilidad de un conductor o grupo de conductores para almacenar carga eléctrica En general el potencial eléctrico V de un conductor aislado es.
Dilatación térmica o Expansión térmica de sólidos y Líquidos
INTRODUCCIÓN A LA CONVECCIÓN
Prof. Pedro José Tineo Figueroa
Paredes compuestas.
3a Sesión práctica. Paredes compuestas Paredes compuestas.
4. Conducción transitoria.
Capacitancia Capacitores: dispositivos para almacenar carga eléctrica
PROBLEMAS CORRIENTE ELÉCTRICA
La clase anterior.. La clase anterior. Transmisión de calor en un tubo circular.
METODO DEL BALANCE DE ENERGÍA DIFERENCIAS FINITAS m,n m,n+1 m,n-1 m-1,nm+1,n.
Calderas de tubos verticales
Energía almacenada por un condensador cargado El proceso de carga de un condensador consiste en el paso de electrones desde la placa de mayor potencial.
Principios Básicos del Procesamiento Térmico
EVAPORADORES FRANCISCO DONADO JOSE COLONNA PAULO SARMIENTO EDWIN PINTO
TEMPERATURA Y CALOR.
¿Qué es la Electricidad?
Convección Convección natural.
CAPACIDAD Y CORRIENTE ELÉCTRICA
PROBLEMAS DE TEMPERATURA
Mecanismos de Transferencia de calor
Procesos de transferencia y recuperación de calor
Universidad Central del Ecuador
INSTALACIONES-2 DEPARTAMENTO DE CONSTRUCCIONES ARQUITECTÓNICAS
Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH
Copyright © 2010 Pearson Education, Inc. Resumen Calor y Temperatura.
Facultad de Ciencias Exactas Químicas y Naturales Universidad Nacional de Misiones Cátedra: Fundamentos de Transferencia de Calor Área: Convección Ing.
Facultad de Ciencias Exactas Químicas y Naturales Universidad Nacional de Misiones Cátedra: Fundamentos de Transferencia de Calor Área: Convección Ing.
PAREDES COMPUESTAS Rafael Fernández Flores. Curso: Transferencia de energía. Facultad de Química UNAM
Lic. Amalia Vilca Pérez.  Se dice que la conducción de calor en un medio es:  Estacionaria (o estable) cuando la temperatura no varía con el tiempo.
Ebullición y condensación.
Convección Forzada Flujo Laminar Interno
Lic. Amalia Vilca Pérez.  La transferencia de calor con frecuencia se tiene interés en la razón de esa transferencia a través de un medio, en condiciones.
Dq conv = q ” s P dx TmTm p v T m + dT m p v + d (p v) x X=0 X=L dx ENTRA= SALE BALANCE DE ENERGÍA = La velocidad de transferencia de calor por convección.
INTEGRANTES: ROGER SOLORZANO DANTE MUÑOZ YABEL RIOS BOLIVAR BRAVO MIGUEL CEDEÑO 1.
Transcripción de la presentación:

2. CONDUCCIÓN UNIDIMENSIONAL EN ESTADO ESTABLE.

a) LA PARED PLANA En flujo estable con fuente no distribuida de energía. Fluido Fluido Caliente Ts1 frío Ts2 T∞1,h1 T∞2,h2

RESISTENCIA TÉRMICA Haciendo una analogía con el sistema eléctrico: Re → Resistencia eléctrica; V → Voltaje; I → Intensidad de corriente eléctrica Rt → Resistencia térmica; T → Temperatura; Q → Calor.

CONTINUA RESISTENCIA TÉRMICA Que representa la resistencia de un circuito de resistencias en serie. T∞1 Ts1 Ts2 T∞2 T∞1 T∞2 1/h1A L/kA 1/h2A Rtot

PARED COMPUESTA Para una pared compuesta. A B C Ts1 T2 T3 Ts2 T∞1, h1 T∞4;h4 fluido fluido caliente x frío Si; U = Coeficiente global de transferencia de calor, se define:

CIRCUITO TÉRMICO EN PARALELO Una pared compuesta como se muestra A B D T1 T2 C El circuito térmico es RB RA RD T1 T2 RC Se puede representar como: RA Req RD Donde. Y también:

RESISTENCIA DE CONTACTO Cuando se tienen dos superficies en contacto, debido a sus irregularidades, se presentan secciones en donde se tienen caídas de temperatura entre estas dos superficies y por lo tanto, una resistencia térmica llamada resistencia de contacto ( R”tc). El valor de esta resistencia depende de la presión a que están unidas esta dos superficies, su material y del tipo de fluido entre estas irregularidades. A B TA TB R”tc depende de: * Acabado superficial * Presión de contacto. x * Fluido entre irregularidades RA R”tc RB

Ejemplo 2.1. El vidrio de ventana trasera de un carro de vidrio de 4 mm espesor, es desempañada por una resistencia eléctrica en su superficie interna. Determine la potencia eléctrica por unidad de área de la ventana para mantener una temperatura de 15 0C. La temperatura interior es de 25 0C y hi = 10 w/m2k, al exterior -10 0C y he = 65 w/m2k SE CONOCE: Temperatura deseada vidrio y condiciones interior y exterior de un carro. SE BUSCA: Potencia por unidad de área para mantener esa temperatura deseada. SE ASUME:,Flujo unidimensional, estado estable Propiedades constantes, radiación y resistencia de película despreciables. ESQUEMA. Aire interior Aire del ambiente Td vidrio T∞i T∞ hi he Propiedades: Vidrio a 300 0K; k = 1.4 w/m 0K ANÁLISIS. El circuito Térmico: T∞i Tsi T∞e 1/hiA L/kA 1/heA

b) SISTEMAS RADIALES Con las condiciones de que: Un problema común es tener un cilindro hueco cuyas superficies interior y exterior están a fluidos de diferentes temperaturas. L d2 d1 fluido fluido caliente frío T∞1 h1 Ts1 Ts2 T∞2 h2 En estado estable y sin generación. Si k = Cte, integrando dos veces:

CILINDRO HUECO COMPUESTO (TUBO) Un tubo con dos capas de otros materiales T3 Ts4 T2 B C T∞4, h4 r1 A r2 r3 r4 T∞1, h1 Ts1 Considerando el concepto de resistencia térmica en sistemas radiales, se puede deducir la ecuación del calor radial como: Otra forma:

EL RADIO CRÍTICO T∞1h1 T∞3 , h3 ra r2 L Cuando se usa un aislante en un cilindro o un tubo, se reducen las pérdidas de Calor, se incrementa la resistencia de conducción. También se tiene el efecto de incrementar el área transferencia de calor por convección reduciendo la resistencia exterior de la película. Estos efectos se deben cuando al variar el radio exterior del aislante. Considerando un tubo con una capa de aislante. T∞1h1 T∞3 , h3 ra r2 L Suponiendo que T1 = T2 = T∞t y que h1 y kt son muy grandes T1 T2T3 r1 r

LA ESFERA HUECA Si la Rt se define como la diferencia de Temperaturas dividida por la razón de calor. Aplicando este método a una esfera Hueca, para un volumen de control Diferencial, la conservación de la energía requiere que. r Ts1 Ts2 dr En estado estable, unidireccional sin generación de energía.

Ejemplo 2.2. Se tiene un tubo de vapor de diámetro exterior de 120 mm y aislado con silicato de calcio con 20 mm. Las temperaturas Ts1 = 800 0K y Ts2 = 490 0K. Encuentre el calor radial / m. SE ASUME: Condición de estado estable, unidimensional y k = Cte PROPIEDADES: k = 0,089 w/m K. DIAGRAMA: Ts2 ANÁLISIS Ts1 Vapor D1 = 0.12 m D2 = 0.16 m COMENTARIO: El calor transferido fuera de la superficie es disipado a los alrededores por convección y radiación.

c) CONDUCCIÓN CON GENERACIÓN DE ENERGÍA TÉRMICA La pared plana. → Energía uniforme Gen / Vol T∞1 ; h1 T∞2 ; h2 Si k = Cte Ts1 q Ts2 x

CASO ESPECIAL Cuando: Ts1 = Ts2 = Ts -L x L T∞ h q T∞ h Qcond Qconv T0 Ts Ts Note que en x = 0 no hay transferencia de Calor a través del plano, puede representarse por una superficie adiabática. En x = L Qcond Qconv T0 q Ts T∞ h x L

CASO DE SISTEMAS RADIALES CON GENERACIÓN TÉRMICA El cilindro. El modelo matemático es: Evaluando en r = 0; fluido frío T∞ ,h Ts T(r = 0) = T0 Qr r0 L Relacionando Ts a la temperatura del fluido frío T∞

Ejemplo 2. 3. Se tiene un conductor de cobre calibre 12 (2 Ejemplo 2.3. Se tiene un conductor de cobre calibre 12 (2.33 mm de diámetro). La resistividad del cobre es de 1.73 x 10-8 Ώm, la conductividad térmica es de 380 w/mK y el coeficiente de transferencia de calor de 10 10 w/m2 k. Determine la ecuación en función de la corriente eléctrica de la diferencia de temperaturas máxima y del ambiente. Para un cilindro la temperatura T( r ) tiene su valor máximo en el centro, cuando r = 0 Se puede calcular el radio crítico si se forra el conductor con un material que tenga por ejemplo una ka = 0.11 w/mK. Es interesante evaluar ΔT para este caso del conductor aislado.

d) ANÁLISIS DE ALETAS Se usan aletas para incrementar el área de contacto del fluido enfriador y así no incrementar “h” por aumento de potencia. dQconv Qx dx dAx Ac(x) x Qx+dx Haciendo el balance de energía: Es la ecuación generalizada de una aleta

ALETAS DE SECCIÓN UNIFORME Def. Cuando se tienen aletas como en el Diagrama Qconv fluido T(0) = Tb ; T∞ → fluido T∞ , h Tb t Ac = Cte Ac As = Px Qf w x L P = 2w+2t P → Perímetro Qconv Ac= wt d As → área de base a “x” L P = πd Qf Ac =πd2/4

CASO (A) Convección en el filo de la aleta Se nota que el gradiente de temperatura decrece con “x” por la pérdida continua de calor por convección en caras de la aleta. Af → Área total de aleta incluyendo el filo de la aleta. El calor fluye por conducción en la aleta y pasa a convección en su filo como muestra la figura Qconv Tb Qb = Qf Resolviendo para C1 y C2

OTROS CASOS DEL ANÁLISIS DE LA ALETA CASO (B). Si la convección en el filo del aleta es despreciable, se trata como adiabático. NOTA. Para usar los resultados del análisis del CASO (A), se tiene que en la práctica es válido si (mL) < 2.65. Si (mL) ≥ 2.65 se puede usar la aproximación infinita. CASO ( C). Θ(L) = θL CASO ( D ). L → ∞ ; θL → o

EJEMPLO 2. 4. Una barra de bronce de 0. 1 m largo y 0 EJEMPLO 2.4. Una barra de bronce de 0.1 m largo y 0.005 m diámetro, se extiende horizontalmente de una fundición a Tb = 200 0C.La barra está en el ambiente a T∞ = 200 C y h = 30 w/m2 K. ¿ cual es la temperatura de la barra a 0.025, 0.050 y 0.1 m ?. Bronce a 110 0C; k = 133 w/mK Evaluando. Diagrama. L = 0.1 m Aire a T∞ y h x1 = 0.025 m, x2 = 0.050 m Tb d x1 x2 L x : X(m) Cosh. m(L-x) Senh. θ T(0 ) X1 1.55 1.19 136.5 156.5 X2 1.24 0.725 108.9 128.9 L 1.00 0.00 87.0 107.0

εf → Efectividad. Relación de la transferencia RENDIMIENTO DE ALETAS Rendimiento de una aleta εf → Efectividad. Relación de la transferencia de calor de la aleta a la razón de calor transferido si no existiera la aleta. εf > 2 para justificar las aletas. En caso ( D ) El rendimiento se puede evaluar en términos de resistencia térmica. Acb → Área de sección transversal de aleta en su base. Eficiencia de una aleta “ηf”. Af → Área de la superficie de la aleta. Aleta recta, área transversal uniforma y filo adiabático. Filo adiabático, sección recta o cilíndrica

RENDIMIENTO DE ALETAS II Errores con la aproximación despreciables si: Aleta sección transversal no-uniforme: Caso de secc. anular; Ac = 2πrt, varía con “r ” Reemplazando “r” por “x” en Ec. de calor.

RENDIMIENTO DE ALETAS III Eficiencia secc transversal no uniforme t r2c = r2 + t/2 r1 L Lc = L + t/2 Ap = Lct r2

EFICIENCIA DE SUPERFICIE GLOBAL Se tienen “N” aletas en un equipo térmico, la eficiencia de superficie global es:

Problema: Vapor de agua fluye por tubo Dext = D1 = 3 Cm a T = 120 0C Problema: Vapor de agua fluye por tubo Dext = D1 = 3 Cm a T = 120 0C. El tubo tiene aletas circulares de Al (k = 180 w/m 0C) de D2 = 6 Cm y espesor, t = 2 mm. El espacio entre aletas es de 3 mm por lo que son 200 aletas/m. El aire exterior está a T∞ = 25 0C, h = 60 W/m2 K. Determine el incremento de la TC del tubo/m por la adición de las aletas. Análisis: Si no se tienen aletas: Asa = πD1L = π (0.03)(1) = 0.0942 m2 Para aletas circulares sujetas a un tubo en una gráfica se tiene: Con estos datos en la gráfica de eficiencia para esta aleta: η = 0.96 La TC en parte libre de aletas es: