Ecuación de Schrödinger Facultad de Ingeniería UNMDP

Slides:



Advertisements
Presentaciones similares
DUALIDAD ONDA - PARTÍCULA EN LA LUZ JUAN PABLO OSPINA LÓPEZ COD
Advertisements

Unidad 1 Estructura atómica de la materia. Teoría cuántica
Unidad 1 Estructura atómica de la materia. Teoría cuántica
QUIMICA CUANTICA Contenidos Mínimos:
INTRODUCCIÓN A LA FÍSICA CUÁNTICA
Teorías de la luz Las principales teorías de la luz son:
Ecuación de Schrödinger
Que es esa cosa llamada luz
EFECTO FOTOELECTRICO Prof. Luis Torres.
FISICA CUANTICA FISICA CUÁNTICA.
NATURALEZA ELECTROMAGNETICA DE LA MATERIA
Ampliació de Química-Física Interacció Materia-Radiació
TEORÍAS ACERCA DE LA LUZ
FÍSICA CUÁNTICA.
Física moderna 1 - Introducción a la mecánica cuántica Andrés Aragoneses.
Física Experimental IV. Curso 2014 Clase 4 Página 1 Departamento de Física Fac. Ciencias Exactas - UNLP Determinación de h/e. Efecto fotoeléctrico. Heinrich.
Larrondo 2008 Fotones, electrones, y …. partículas cuánticas ó paquetes de onda.
Teoría cuántica y el efecto fotoeléctrico
CONCEPTOS BÁSICOS DE MECÁNICA CUÁNTICA
La Luz Naturaleza de la luz.
Física de Semiconductores Clases: 3 de Marzo 5 de Marzo 10 de marzo 12 de marzo Constante de planck, Sistema cuántico y Evolución de el modelo atómico.
Universidad Nacional de Colombia Álvaro Antonio Baena Rubio G1E3Alvaro.
EFECTO FOTOELECTRICO Historia - Descripción
UN Nombre: Fabian Andres Robayo Quinbtero Fecha: 14/06/2015
Fundamentos de Física Moderna Mecánica Cuántica
Compendio de Experimentos Clásicos de la Física Moderna ANDRÉS FABIÁN DUQUE RINCÓN GIE08ANDRES.
G1E06Domingo DOMINGO ALFONSO CORONADO ARRIETA FISICA MODERNA
Fundamentos de Física Moderna PROPIEDADES ONDULATORIAS DE LA MATERIA UNIVERSIDAD NACIONAL DE COLOMBIA SEDE BOGOTÁ PEDRO ANDREY CAÑÓN JIMÉNEZ G2E10PEDRO.
Fundamentos de Física Moderna Mecánica Cuántica
Propiedades Ondulatorias de la Materia
Camilo Andrés Mondragón Giraldo G2E21Camilo 31 de mayo de 2015
Joan Camilo Poveda Fajardo G1E21Joan Louis Víctor de Broglie ( ) En su tesis doctoral Broglie propuso que se podrían unificar los comportamientos.
UNIVERSIDAD NACIONAL DE COLOMBIA Oswaldo Ivan Homez Lopez G1E13Oswaldo
UN Andrés Camilo Vargas Páramo G2E34 19 de junio de 2014
Ross Alejandra Silva Torres Ingeniería eléctrica física moderna
Compendio de experimentos clásicos de la Física Moderna Juan Pablo Sánchez Grupo 1-31 Fundamentos de Física Moderna Universidad Nacional de Colombia.
 G2E22Daniel Daniel Alejandro Morales Manjarrez Fundamentos de física moderna.
FUNDAMENTOS DE FÍSICA MODERNA PROPIEDADES ONDULATORIAS DE LA MATERIA -ONDAS DE MATERIA- UN ESTEBAN GUZMÁN G2E15CARLOS 2015.
Fundamentos de Física Moderna Radiación del Cuerpo Negro (modelo cuántico) Sergio Toledo Cortes -G2E31- Junio/14/2015.
UN Sergio Toledo Cortes G2E FUNDAMENTOS DE FÍSICA MODERNA PERSONAJES.
Nombre: Camilo Andrés Vargas Jiménez -G2E32Camilo-
Fundamentos de Física Moderna Mecánica Cuántica
PROPIEDADES ONDULATORIAS DE LA MATERIA Daniel Mateo Aguirre Bermúdez G2E03Daniel 08/06/2015.
Fundamentos de Física Moderna Ondas de Materia
Compendio de Experimentos Clásicos de la Física Moderna Jonathan Alexis Saldarriaga Conde -G1E25Jhonatan- 09/06/2015.
UN JUAN F. QUINTERO DUARTE G2E26
Jhoan Manuel Martínez Ruiz Universidad Nacional de Colombia.
ALFONSO PIMIENTA TRUJILLO
Física Cuántica Durante el siglo XIX, diversos físicos trataron de comprender el comportamiento de los átomos y moléculas a partir de las leyes físicas.
Compendio de Experimentos Clásicos de la Física Moderna
Brigith Vanessa García Lozano -G2E13Brigith- 14-Junio-2015
FÍSICA CUÁNTICA.
Nombre: Fabian Andres Robayo Quintero Fecha: 13/06/2015
Compendio de Experimentos Clásicos de la Física Moderna
Una nueva descripción del átomo según la Mecánica Ondulatoria
Física Cuántica.
Modelos atómicos hasta el actual
MOVIMIENTO ONDULATORIO: Perturbación de una situación física (campo) producida en un punto del espacio, que se propaga a través del mismo y se recibe en.
Dualidad onda-partícula (relación de broglie)
* Series espectrales de emisión del
Tema 2. Física cuántica Resumen.
Mecánica Cuántica Universidad Nacional de Colombia sede Bogotá Fundamentos de Física Moderna 2016 Edward López Díaz Código
TEORÍA CUÁNTICA: la solución de Planck, el efecto fotoeléctrico y efecto Compton Xihomara Lizzet Casallas Cruz Grupo 9 N 7 D.I Física III.
RADIACIÓN DE CUERPO NEGRO FUNDAMENTOS DE FÍSICA MODERNA REALIZADO POR: JUAN DAVID GARCÍA PINZÓN ESTUDIANTE DE INGENIERÍA INDUSTRIAL.
La teoría CUÁNTICA LA HIPÓTESIS DE PLANCK LA TEORÍA CUÁNTICA La teoría cuántica, es una teoría física basada en la utilización del concepto de unidad.
PROFESOR JAIME VILLALOBOS VELASCO DEPARTAMENTO DE FÍSICA UNIVERSIDAD NACIONAL DE COLOMBIA KEVIN DANIEL BARAJAS VALEROG2N03.
Mecánica Cuántica Universidad Nacional de Colombia sede Bogotá Fundamentos de Física Moderna 2016 Sergio Alejandro Sánchez Código
María Constanza calderón Sanjuán
Radiación del cuerpo negro Fundamentos de Física Moderna UN Por: Luis Miguel Avellaneda Codigo:
Profesor Jaime Villalobos Velasco Departamento de Física Universidad Nacional de Colombia Marzo ______________________________________________.
Transcripción de la presentación:

Ecuación de Schrödinger Facultad de Ingeniería UNMDP Ondas de Materia Ecuación de Schrödinger Física 3 -2011 Facultad de Ingeniería UNMDP

Radiación de cuerpo negro Problemas abiertos de la física clásica a fines del siglo XIX Antecedentes de la mecánica cuántica Radiación de cuerpo negro Efecto fotoeléctrico Todo cuerpo a temperatura mayor a 0K emite radiación en todo el espectro de frecuencias. El espectro de emisión depende tanto de la frecuencia como de la temperatura. Un cuerpo negro modela un cuerpo que es capaz de absorber toda la radiación que incide sobre él. Luz incidente sobre un metal con una frecuencia mayor a cierto umbral produce una corriente. La corriente aparece en forma casi instantánea, aun para luz de muy baja intensidad. La corriente es proporcional a la intensidad que llega a la superficie del metal.

Radiación de cuerpo negro Observaciones experimentales Termografía Todo cuerpo con temperatura T >0K emite radiación. Conforme la temperatura aumenta crece la potencia emitida y el pico de la distribución se corre hacia longitudes de onda mas cortas, del infrarrojo al ultravioleta.

Radiación de cuerpo negro Predicciones de la teoría clásica y la solución de Planck Predicción de la teoría clásica La teoría del electromagnetismo clásico, predice que un cuerpo negro ideal en equilibrio térmico debe emitir energía en todos los rangos de frecuencia; de manera que a mayor frecuencia, mayor energía. Esto da a lugar al fenómeno conocido como catástrofe del ultravioleta. Teoría de Planck (1900) Un cuerpo negro puede emitir radiación en paquetes discretos o cuantos, con energías,que son múltiplos de la energía E = hf donde h es una constante y f es la frequencia de la radiación. h = 6.62 x 10-34 Joule sec Surge así una nueva constante fundamental de la naturaleza, que determina dónde cobran relevancia los fenómenos a escala microscópica. Solución

Otras evidencias de los fotones Efecto fotoeléctrico Ratifica el concepto de “cuanto” que surge en la teoría de Planck Predicción de la teoría clásica Con el electromagnetísmo clásico no era posible explicar la existencia de una frecuencia umbral ni la emisión cuasi-instantánea de los fotoelectrones. Teoría de Einstein (1905) La luz está compuesta por partículas llamadas fotones Así un fotón al interactuar con el electrón tiene una Energía E=hf . Producto de esta interacción la energía final del electrón será Ek = hf – f, donde f es la función trabajo del metal. Dado que el evento es una colisión, la emisión es instantanea y la generación de fotoelectrones es uno a uno con respecto a los fotones incidentes. Otras evidencias de los fotones La prolongada exposición a rayos UV generan cáncer de piel (MELANOMA) dado que la energía de los fotones UV (~ 1eV) está en el orden de la uniones química en las moléculas de nuestro ADN; no así la de su celular RF (~ 0.06meV) Nuestro ojo detecta colores gracias a que fotones de distintas energías disparan reacciones químicas diferentes en las células de nuestra retina. Solución

La luz es una ONDÍCULA Curiosidades acerca de la dualidad de la luz Evolución de nuestro conocimiento acerca de la naturaleza de la luz Teoría corpuscular de Newton (1704) Modelo corpuscular Fenómenos de Interferencia y difracción de Luz no podían ser explicados por el modelo corpuscular. Teoría ondulatoria Huygens,Young, Fresnel, Arago (1790) Teoría de EF (Fotón) Einstein (1905) ONDÍCULA

¿Serán ONDÍCULAS las partículas de materia? Hipótesis de de Broglie Louis V. de Broglie presenta su tesis doctoral en 1923, en la que sugiere que las partículas con masa deberían tener propiedades ondulatorias similares a la luz. Si la luz puede actuar como una partícula (Fotón) . ¿Por qué no podrán las partículas de materia comportarse también como ondas? Constante de Planck Momento de la partícula Longitud de onda piloto de de Broglie La longitud de onda para las ondas de materia se conoce como longitud de onda piloto de de Broglie

¿Cómo podríamos representar tanto a una onda como a una partícula? Sobre las ondas y las partículas Conceptos y paquete de onda Nuestro conocimiento tradicional de partícula referencia a algo que está “LOCALIZADO”- confinado en el espacio con una posición y un momento definido. Partícula Onda Nuestro conocimiento tradicional de una onda está relacionado con algo “DE-LOCALIZADO”- disperso en el espacio y el tiempo ¿Cómo podríamos representar tanto a una onda como a una partícula? Paquete de onda

Paquetes de onda Velocidad de fase y grupo Las velocidades de las ondas individuales que se superponen para formar el paquete de ondas son diferentes de modo que el paquete, como un todo, tiene una velocidad diferente a la de sus componentes. Velocidad de fase (Vf): La velocidad a la que la fase de la onda se propaga en el espacio. Velocidad de grupo (Vg): La velocidad a la que la envolvente del paquete de ondas se propaga.

Dos consecuencias importantes de las desigualdades de Heisenberg son: Velocidad de fase y grupo Las desigualdades de Heisenberg son una consecuencia importante de la dualidad onda-partícula de la materia y la radiación y es inherente a su naturaleza cuántica. Una de las desigualdades postula, que la posición y el momento de un objeto no están definidos con exactitud simultáneamente. Posición / momento Energía / tiempo Posición / momento y Energía /tiempo se conocen con el nombre de variables conjugadas Dos consecuencias importantes de las desigualdades de Heisenberg son: La trayectoria de una particula no está bien definida en el dominio cuántico La incerteza es inherente al dominio cuántico y nada tiene que ver con la interacción con los instrumentos de medición o la intervención del observador

Interferencia de doble rendija Trabajando con partículas y ondas Esperamos que las partículas pasen por la rendija (1) ó (2). Observamos asi un patrón que se correponde con la suma de las figuras de difracción Ondas

La hipótesis de de Broglie se cumple. ¡¡Los electrones son ondículas!! Patrón de Interferencia de electrones Si se mide la distribución de eletrones sobre una superficie detectora conforme pasa el tiempo, se observa un patrón de interferencia. Esto indica que los electrones no pudieron haber pasado por (1) o por (2) tal lo suponemos para una partícula sino que debieron pasar por (1) y (2). La hipótesis de de Broglie se cumple. ¡¡Los electrones son ondículas!! Esto fué verificado por Davidsson & Germer de los Bell Labs (1926)

como consecuencia de las desigualdades de Heisenberg Debemos buscar una ecuación para modelar la dinámica de las ondículas como consecuencia de las desigualdades de Heisenberg La trayectoria de una particula no está bien definida en el dominio cuántico F=ma Pues ¿Entonces?

Ecuación de onda clásica Simetrías x -x Inversión espacial (reflexión) t -t Inversión temporal Soluciones Relacion de dispersión

En busca de una ecuación que describa la dinámica de las ondículas De Broglie Energía de una partícula en 1D Planck Solución Ecuación de Schrödinger en 1D Función compleja de variable real que representa el estado de la ondícula

La ecuación de Schrödinger dependiente de t Algunos comentarios La ecuación de Schrödinger dependiente del tiempo describe la dinámica de una ondícula, no relativista (esto es con masa en reposo no nula y velocidad mucho menor que c) La ec. de Schrödinger dependiente del tiempo es una ecuación diferencial a derivadas parciales en x y t . A diferencia de la ecuación de onda clásica, es de primer orden en el tiempo. En este sentido se corresponde con la forma de una ecuación del tipo de difusión que modela un proceso irreversible. Sus soluciones son funciones complejas de variable real a diferencia de las correspondientes a la ecuación de onda clásica donde la parte real e imaginaria son soluciones. Ahora conocemos la ecuación que describe la dinámica de una partícula en 1D pero el precio que debemos pagar es que sus soluciones (estado de la ondícula) son funciones complejas de variable real (no las podemos medir directamente). Solución

Interpretación de la función de onda Interpretación de Born Dado que Ψ(x,t) es una función compleja de variable real. Cómo se corresponde con una medida fisica sobre el sistema? Recordemos que en las OEM: el número de fotones por unidad de volumen es proporcional  a la energía electromagnética por unidad de volúmen, por lo tanto, a cuadrado de la intensidad del campo electromagnético. Postulado (Interpretación de Born): La densidad de probabilidad de encontar una partícula en un pequeño intervalo de longitud δx entorno del un punto x en un tiempo t es igual a Así la probabilidad total de encontrar a la partícula entre dos posiciones a y b es a b |Ψ|2 x δx Max Born

Conservación del flujo de probabilidad Otras propiedades interesantes La ecuación de Schrödinger dependiente del tiempo admite, por ser de segundo orden, dos soluciones linealmente independientes. Dado que éstas son complejas entonces: Si es solución, , su conjugada compleja, también lo es. (1) (2) Notemos que es posible a partir de (1) y (2) construir una ecuación para el |Y(x,t)|2, simplemente multiplicando miembro a miembro (1) por Y* y (2) por Y.

Reintrerpretando la interferencia de doble rendija Pantalla detectora Flujo incidente de partículas coherentes, o luz D θ y Término correspondiente a las “partículas” usuales Término de interferencia