Estadística Descriptiva: 3. Análisis Bivariado Ricardo Ñanculef Alegría Universidad Técnica Federico Santa María
Estadística Descriptiva Objetivo Obtener información desde una muestra, que permita entender o formular hipótesis acerca del fenómeno que se estudia. Tipos de Análisis: Describir cómo se comporta una variable Describir cómo una variable (digamos explicativa) afecta el comportamiento de a otra (digamos dependiente) Describir cómo interaccionan varias variables
Estadística Descriptiva Objetivo Obtener información desde una muestra, que permita entender o formular hipótesis acerca del fenómeno que se estudia. Tipos de Análisis: Análisis Univariado Análisis Bivariado Análisis Multivariado
Estadística Descriptiva Ejemplos de Análisis Bivariado
Estadística Descriptiva Ejemplos de Análisis Bivariado Hipotesis Preliminar que Guía el Análisis: La probabilidad de muerte del feto en un embarazo se ve influenciada (aumenta) con el nivel de estrés de la madre. Posible experimento. 1. Tomamos una muestra de casos clínicos. 2. Separamos la muestra en dos grupos: (A) madres con estrés y (B) madres sin estrés. 3.Medimos la frecuencia de muertes en cada grupo 4.Comparamos ambas frecuencias.
Estadística Descriptiva Análisis de Muestras Estratificadas Lo anterior es un ejemplo de Análisis Estratificado: Se divide una muestra de acuerdo al valor de una variable que llamaremos variable estratificadora X. Se estudia el comportamiento de otra variable de interés Y en cada subgrupo o estrato. Se da cuenta de cómo cambia el comportamiento de Y al cambiar de estrato X.
Estadística Descriptiva Análisis de Muestras Estratificadas El análisis estratificado pretende mostrar cómo cambia una variable (Y) cuando cambia otra (X). En el estudio con las embarazadas: Estratificadora (X): Presencia o ausencia de estrés. Dependiente (Y): Presencia o no de muerte fetal. Se determina cómo cambia el promedio de Y (tasa de muerte) cuando cambiamos de estrato.
Estadística Descriptiva Análisis de Muestras Estratificadas ¿Qué tal si la hipótesis fuera?: “La probabilidad de muerte fetal depende del número de sueño de la madre en el período de gestación”. ¿Cómo estratificamos la muestra? El problema es que la variable explicativa (X=horas de sueño) es ahora continua.
Estadística Descriptiva Análisis de Muestras Estratificadas Idea: Si la variable explicativa es continua, definir categorías de valores posibles y separar la muestra de acuerdo a ellas. ¿Cómo determinar las categorías?: juicio o conocimiento previo: estrato económico, partido político, niveles normales/anormales. criterio estadístico: como el utilizado construir histogramas (organizar por clases).
Estadística Descriptiva Análisis de Muestras Estratificadas Ejemplo: En la muestra se registraron las siguientes horas de sueño promedio durante los últimos 6 meses de gestación: 8.0, 8.5, 11.0, 6.5, 7.2, 6.2, 10.0, 10.5, 9.2, 9.5, 6.0, 7.2, 6.9, 6.4, 12.5, 10.8 con k = 3 R = 12.5 – 6.0 = 6.5 A = (R + 1) / 3 = 2.5 Grupo 1 2 3 Límites 5.5 - 8.0 8.0 - 10.5 10.5 – 13.0 Marca 6.75 9.25 11.75
Estadística Descriptiva Análisis de Muestras Estratificadas Una vez que ya hemos estratificado con algún criterio: ¿qué medimos? E1 E2 Em
Estadística Descriptiva Análisis de Muestras Estratificadas Una vez que ya hemos estratificado con algún criterio: ¿qué medimos?: frecuencias. ¿Cuántas observaciones caen en cada estrato?: frecuencias absolutas (n1 , n2 , … , nm) ó relativas (p1 , p2 , … , pm ) Estas últimas dan el peso del estrato en la muestra total p1 p2 pm
Estadística Descriptiva Análisis de Muestras Estratificadas Una vez que ya hemos estratificado con algún criterio: ¿qué medimos?: tendencia. ¿Cuál es la tendencia en cada estrato?: media, mediana, etc.
Estadística Descriptiva Análisis de Muestras Estratificadas Una vez que ya hemos estratificado con algún criterio: ¿qué medimos?: dispersión. ¿Cuál es la dispersión en cada estrato?: varianza, IQR
Estadística Descriptiva Análisis de Muestras Estratificadas Una vez que ya hemos estratificado y analizado el comportamiento de la variables por estrato, es útil presentar las estadísticas de manera gráfica, e.g. box-plots.
Estadística Descriptiva Análisis de Muestras Estratificadas Box-plots por cada estrato E2 E1 E3
Estadística Descriptiva Análisis de Muestras Estratificadas Una forma de medir el efecto de la variable presuntamente explicativa (X) sobre la explicada (Y) es el Análisis de Varianza. Idea: si la presunta variable estratificadora X explica bien la otra variable Y, ésta última no debiera ser muy variable con X constante en comparación con el cambio observado al cambiar X
Estadística Descriptiva Análisis de Muestras Estratificadas Análisis de Varianza: Varianza Intra-Estratos: dentro de los grupos. Ponderamos por el peso del estrato!!! Varianza no explicada por la variable estratificadora
Estadística Descriptiva Análisis de Muestras Estratificadas Análisis de Varianza: Varianza Inter-Estratos: entre los grupos. Varianza explicada por la variable estratificadora media total o promedio ponderado de las medias por grupo. media de cada grupo inducido por la variable explicativa X
Estadística Descriptiva Análisis de Muestras Estratificadas Análisis de Varianza: Varianza Inter-Estratos: entre los grupos. Varianza explicada por la variable estratificadora Ponderamos por el peso del estrato!!!
Estadística Descriptiva Análisis de Muestras Estratificadas Análisis de Varianza: Varianza Muestral Total: Varianza Muestral Sin Estratificar
Estadística Descriptiva Análisis de Muestras Estratificadas Análisis de Varianza: Cuociente de Varianza Explicada: Medida de la calidad de la variable estratificadora X como variable explicativa para Y Para todo lo anterior necesitamos que Y sea continua, pero X puede ser continua o discreta, numérica o cualitativa.
Estadística Descriptiva Análisis de Muestras Estratificadas Ejemplo de Análisis de Varianza: Consideremos la siguiente hipótesis de estudio: Caminar ayuda a mantener un índice de grasa corporal adecuado.
Estadística Descriptiva Análisis de Muestras Estratificadas Ejemplo de Análisis de Varianza: Para validar la hipótesis se tomó una muestra de 16 hombres, encuestándolos acerca del número de horas caminadas a la semana y midiendo su % de grasa corporal. La muestra es la siguiente:
Estadística Descriptiva Análisis de Muestras Estratificadas Ejemplo de Análisis de Varianza: horas (H) % grasa (G) 4 18.9 2 22.5 1.5 24.8 6.5 18.0 5 17.5 0.5 27.2 1 26.2 0.9 25.5 4.2 18.2 3 20.8 6 18.4 21.8 2.5 21.4 22.6 7 17.4 3.5 21.0
Estadística Descriptiva Análisis de Muestras Estratificadas Ejemplo de Análisis de Varianza: Decidimos estratificar la muestra de acuerdo al número de horas caminadas, considerano 3 clases para el conjunto de valores de esta variable: R = (7-0.5) = 6.5 A = (R + 1)/3 = 2.5 clase Límites frecuencia 1 (0, 2.5] 0.3750 2 (2.5, 5] 0.4375 3 (5, 7.5] 0.1875
Estadística Descriptiva Análisis de Muestras Estratificadas Ejemplo de Análisis de Varianza: Estratificamos por cada clase de valores para la variable “horas caminadas” generandose 3 submuestras Estrato 3 Estrato 1 Estrato 2 4 18.9 5 17.5 4.2 18.2 3 20.8 21.8 22.6 3.5 21.0 6 18.4 7 17.4 6.5 18.0 1.5 24.8 1 26.2 2.5 21.4 2 22.5 0.5 27.2 0.9 25.5
Estadística Descriptiva Análisis de Muestras Estratificadas Ejemplo de Análisis de Varianza: Medimos las medias y las varianzas por estrato: clase límites frecuencia media varianza 1 (0, 2.5] 0.3750 24.60 4.1367 2 (2.5, 5] 0.4375 20.11 3.1784 3 (5, 7.5] 0.1875 17.93 0.1689
Estadística Descriptiva Análisis de Muestras Estratificadas Ejemplo de Análisis de Varianza: Calculamos las varianzas intra e inter clase límites frecuencia media varianza 1 (0, 2.5] 0.3750 24.60 4.1367 2 (2.5, 5] 0.4375 20.11 3.1784 3 (5, 7.5] 0.1875 17.93 0.1689
Estadística Descriptiva Análisis de Muestras Estratificadas Ejemplo de Análisis de Varianza: Calculamos las varianzas intra e inter clase límites frecuencia media varianza 1 (0, 2.5] 0.3750 24.60 4.1367 2 (2.5, 5] 0.4375 20.11 3.1784 3 (5, 7.5] 0.1875 17.93 0.1689
Estadística Descriptiva Análisis de Muestras Estratificadas Ejemplo de Análisis de Varianza: Corroboramos la descomposición propuesta: % de varianza explicada (fracción del cambio en el índice de grasa que explica o predice el número de horas caminadas) Hay una relación bien significativa
Estadística Descriptiva Análisis de Muestras Estratificadas ¿Es valida la relación entre las varianzas cuando estas se calculan normalizando la suma de cuadrados por n-1 en vez de n?
Estadística Descriptiva Análisis de Muestras Estratificadas Cuando entremos en Estadística Inferencial justificaremos porqué es más útil y correcto comparar las sumas de cuadrados Suma sobre las observaciones del estrato k Suma sobre los estratos Número de observaciones en el estrato k
Estadística Descriptiva Análisis de Muestras Estratificadas ANOVA (Análisis de Varianza) Comparamos la variabilidad intra versus la inter De acuerdo al valor de F podemos aseverar que la variable estratificadora induce cambios en la otra variable con una significancia estadística α Estadístico F de Fisher (m: número de clases)
Análisis de Contingencia o Correspondencia Dadas dos variables X, Y dividir los posibles valores de X en k grupos y los posibles valores de Y en s grupos. Determinar luego las frecuencias conjuntas de cada par formado por uno de los grupos de X y uno de los grupos para Y: con qué frecuencia las observaciones caen en un grupo X y un grupo Y simultáneamente.
Análisis de Contingencia o Correspondencia Y: B1 B2 … Bs X: A1 A2 … Ar Grupos de valores para Y Grupos de valores para X
Análisis de Contingencia o Correspondencia Frecuencia con que en la muestra aparecen observaciones que caen en la categoría i de acuerdo al valor de X y en la categoría j de acuerdo al valor de Y B1 B2 ..... Bj ..... Bs A1 n11 n12 ..... n1j ..... n1s A2 n21 n22 ..... n2j ..... n2s Ai ni1 ni2 ..... nij ..... nis Ar nr1 nr2 ..... nrj ..... nrs
Análisis de Contingencia o Correspondencia Frecuencias Marginales: Cuando interesa la frecuencia de una de las variables independiente de lo que pase con la otra hablamos de Frecuencia Marginal de la variable X ó Y
Análisis de Contingencia o Correspondencia Frecuencias Marginales por Clases de X B1 B2 ..... Bj ..... Bs Total A1 n11 n12 ..... n1j ..... n1s n1 A2 n21 n22 ..... n2j ..... n2s n2 Ai ni1 ni2 ..... nij ..... nis ni Ar nr1 nr2 ..... nrj ..... nrs nr
Análisis de Contingencia o Correspondencia Frecuencias Marginales por Clases de Y B1 B2 ..... Bj ..... Bs Total A1 n11 n12 ..... n1j ..... n1s n1 A2 n21 n22 ..... n2j ..... n2s n2 Ai ni1 ni2 ..... nij ..... nis ni Ar nr1 nr2 ..... nrj ..... nrs nr Total n1 n2 ..... nj ..... ns n n = n _
Análisis de Contingencia o Correspondencia Frecuencias Marginales: s å Frecuencia Absoluta de la clase Ai; i = 1, ,2, ... ,r Frecuencias Independientes de la clases Bj a la que estén asociadas: suma de los valores de la fila i-ésima n = n i · ij j = 1 r å Frecuencia Absoluta de la clase Bj; j= 1, ,2, ... ,s Frecuencias Independiente de las clases Ai a la que estén asociadas: suma de los valores de la columna j-ésima n = n · j ij i = 1
Análisis de Contingencia o Correspondencia nij Tabla de Contingencia con Frecuencias Relativas fij = n B1 B2 ..... Bj ..... Bs Total A1 f11 f12 ..... f1j ..... f1s f1 A2 f21 f22 ..... f2j ..... f2s f2 Ai fi1 fi2 ..... fij ..... fis fi Ar fr1 fr2 ..... frj ..... frs fr Total f1 f2 ..... fj ..... fs f
Análisis de Contingencia o Correspondencia Frecuencias Relativas Marginales: Análogo al caso de frecuencias absolutas. s å Frecuencia Relativa de la clase Ai; i = 1, ,2, ... ,r suma de los valores de la fila i-ésima de la tabla de frecuencias relativas conjuntas f = f i · ij j = 1 r å Frecuencia Relativa de la clase Bj; j= 1, ,2, ... ,s suma de los valores de la columna j-ésima de la tabla de frecuencias relativas conjuntas f = f · j ij i = 1
Análisis de Contingencia o Correspondencia Frecuencias Condicionales: Las frecuencias condicionales de una clase Ai (asociada a X) dado un grupo Bj (asociado a Y) corresponden a la proporción de casos de Bj en que se observa Ai
Análisis de Contingencia o Correspondencia Frecuencias Condicionales: Las frecuencias condicionales de una clase Bj (asociada a Y) dado un grupo Ai (asociado a X) corresponden a la proporción de casos de Ai en que se observa Bj
Análisis de Contingencia o Correspondencia Ejemplo Se tiene la siguiente sospecha: “El consumo de sal sube la presión arterial”. Para ello se toma una muestra de pacientes a quienes se les hace un seguimiento, midiendo ambas variables X: cucharas de sal consumidas en la semana Y: presión arterial media en la semana Después de un análisis se decide dividir la variable X en 3 intervalos: bajo, medio, alto. Análogamente, la variable Y se divide en tres intervalos que asociamos a: baja, normal, alta.
Análisis de Contingencia o Correspondencia Ejemplo Después de un análisis se decide dividir la variable X en 3 intervalos: bajo, medio, alto. Análogamente, la variable Y se divide en tres intervalos que asociamos a: baja, normal, alta. Las frecuencias conjuntas en la muestra son las sgtes: Y: presión arterial X: Consumo de Sal Baja Normal Alta Bajo 8 4 Medio 5 15 Alto 1 20
Análisis de Contingencia o Correspondencia Ejemplo Las frecuencias conjuntas en la muestra son las sgtes: Y: presión arterial X: Consumo de Sal Baja Normal Alta Bajo 8 4 Medio 5 15 Alto 1 20
Análisis de Contingencia o Correspondencia Ejemplo Las frecuencias marginales son las sgtes: Y: presión arterial X: Consumo de Sal Baja Normal Alta Bajo 8 4 20 Medio 5 15 25 Alto 1 26 14 28 29 71
Análisis de Contingencia o Correspondencia Ejemplo Las frecuencias relativas son las sgtes: Y: presión arterial X: Consumo de Sal Baja Normal Alta Bajo 8/71 4/71 20/71 Medio 5/71 15/71 25/71 Alto 1/71 26/71 14/71 28/71 29/71 1
Análisis de Contingencia o Correspondencia Ejemplo Condicionando a la variable X (consumo de sal) Las frecuencias condicionales son las sgtes: Y: presión arterial X: Consumo de Sal Baja Normal Alta Bajo 8/20 4/20 1 Medio 5/25 15/25 Alto 1/26 5/26 20/26
Análisis de Contingencia o Correspondencia Ejemplo Condicionando a la variable X (consumo de sal) 0,7 Observamos un claro cambio de la distribución de la presión de acuerdo al consumo de sal 0,6 0,5 0,4 0,3 0,2 0,1 X: Bajo X: Medio X: Alto
Análisis de Contingencia o Correspondencia Frecuencias Condicionales: Proporcionan una forma de medir la influencia de la variable X sobre la variable Y (o viceversa) Notar que las frecuencias se normalizan por un número más reducido de casos, que corresponden a los casos en que se observa el condicionante.
Análisis de Contingencia o Correspondencia Independencia: Diremos que X es independiente de Y si las frecuencias condicionales de X a las diferentes clases de Y son todas iguales; es decir, no dependen de la clase condicionante
Análisis de Contingencia o Correspondencia Independencia: Diremos que Y es independiente de X si las frecuencias condicionales de Y a las diferentes clases de X son todas iguales; es decir, no dependen de la clase condicionante
Análisis de Contingencia o Correspondencia Observación 1: Si X es independiente de Y Similarmente, si Y es independiente de X Demostración?
Análisis de Contingencia o Correspondencia Demostración: =
Análisis de Contingencia o Correspondencia Observación 2: Si X es independiente de Y Demostración
Análisis de Contingencia o Correspondencia Observación 3: Si X es independiente de Y entonces Y es independiente de X Demostración
Análisis de Contingencia o Correspondencia Información Mutua Si aceptamos la tabla de contingencia como una distribución aproximada podemos computar la información mutua de X e Y
Análisis de Contingencia o Correspondencia Información Mutua Si X es independiente de Y, I=0 Si X = Y, I es equivalente a la entropía de X
Análisis de Contingencia o Correspondencia Distancia entre las condicionales Una forma intuitiva de cuantificar el cambio que induce una variable en la otra es medir las distancias entre las condicionales considerandolas vectores
Análisis de Contingencia o Correspondencia Al igual que antes es útil analizar la relación entre las variables de manera gráfica. Se presentan las frecuencias de una variable (digamos Y), por cada clase de la otra (X) También es posible mostrar las frecuencias condicionales en vez de las frecuencias relativas
Estadística Descriptiva Análisis de Muestras Estratificadas Histogramas por clase Clase 1 (Y) Frecuencias Relativas 0,5 Clase 2 (Y) Clase 3 (Y) 0,4 0,3 0,2 0,1 X: Clase 4 X: Clase 1 X: Clase 2 X: Clase 3
Estadística Descriptiva Análisis de Muestras Estratificadas Histogramas por clase (apilados) Clase 1 (Y) 0,7 Clase 2 (Y) 0,6 Clase 3 (Y) 0,5 0,4 0,3 0,2 0,1 X: Clase 1 X: Clase 2 X: Clase 3 X: Clase 4