Medidas de Desempeño Teoría de Colas

Slides:



Advertisements
Presentaciones similares
LICENCIATURA EN SISTEMAS COMPUTACIONALES EN ADMINISTRACION
Advertisements

José David Arzabe Armijo
Líneas de Espera: Teoría de Colas
INSTITUTO TECNOLÓGICO DE VILLAHERMOSA   MATERIA:
Simulación por Eventos Discretos
SIMULACION DE SISTEMAS DISCRETOS
Modelo de Colas Simulación.
TEORÍA DE COLAS o de ESPERA EN FILA
MVZ MC LUIS ALONSO RUIZ JUÁREZ Sigue habiendo un elevado porcentaje de vacas que reciben su 1er servicio después de los 100 días en leche. El promedio.
Tema 5: Teoría de colas Ezequiel López Rubio
Modelo m/G/1 Teoría de Colas.
Modelo m/Ek/1 Teoría de Colas.
Modelo M/M/s/k Teoria de Colas.
Investigación de Operaciones
Las finanzas y las matemáticas financieras
Modelo m/m/s Teoría de Colas.
Modelo M | M | 1 Teoria de Colas.
LÍNEAS DE ESPERA. UNIDAD II.
Instituto Tecnológico
UNIDAD 2 CARRERA: ALUMNO: CATEDRATICO:
Instituto tecnológico de Villahermosa
TEORIA DE COLAS.
Teoría de Colas ICEF.
Teoría de Colas ICEF.
Teoría de Colas ICEF.
Capítulo 7 Teoría de Colas.
Unidad 2 “Líneas de espera”
INSTITUTO TECNOLOGICO DE VILLAHERMOSA “INVESTIGACION DE OPERACIONES”
Fenómenos de Espera en Fila
Estrategia y Planeación de Medios
Sesión Teórico/Práctica No. 1
TEORIA DE JUEGOS TEORIA DE JUEGOS
Notación de Kendall Teoria De colas.
Teoría de Colas Notación de Kendall – Lee Ejercicios
TEORIA DE COLAS Integrantes: Luis Sibaja Edgar Castro Oscar Hurtado
Capítulo 9 Modelos de Espera
SIMULACION AVANZADA COMIMSA PICYT 1 TEORIA DE COLAS Presenta: Alvaro Sanchez Martinez Pedro Pérez Villanueva 26 Sep
Ejemplos Teorías de colas.
Teoría de colas Teoría de colas Alternativa a estudios de simulación
Métodos Cuantitativos Aplicados a Costos y Producción
AGENDA Dudas Laboratorio de ejercicios propuesto
Introducción Líneas de Espera
Teoría de Colas.
Departamento de Informática Universidad Santa María
MEDIDAS DE APARICION DE LA ENFERMEDAD
Colas M/M/S M/G/S Simulación
LÍNEAS DE ESPERA Gabriel García Velazquez.
LINEAS DE ESPERA (TEORIA DE COLAS)
2.1 Definiciones, características y suposiciones.
Colas M/M/1 Simulación Simulación- Ing. Ricardo Fernando Otero - Pregrado Ingeniería Industrial – Pontificia Universidad Javeriana Sede Bogotá.
Teoría de Trafico en Redes
Líneas de Espera: Teoría de Colas
Procesos Estocásticos Edgar H Criollo V Mayo 2010
ROTACIÓN DE INVENTARIO
Villahermosa, Tab. 21 septiembre MATERIA: Investigacion de operaciones TEMA: Lineas de espera ALUMNOS: Maria isabel vega chanona HORA: 11:00 am a.
INVESTIGACIÓN DE OPERACIONES
Líneas de Espera: Teoría de Colas
Unidad 2:Lineas de espera 2
2.1 DEFINICIONES LINEAS DE ESPERA, CARACTERISTICAS Y SUPOSICIONES
Ley de Little Procesos Estocásticos y Teoría de Filas
I n s t i t u t o T e c n o l ó g i c o d e T e c n o l ó g i c o d e V i l l a h e r m o s a ING. EN SISTEMAS CATEDRATICO: I.I. Zinath Javier Gerónimo.
2.1 DEFINICIONES CARACTERÍSTICAS Y SUPOSICIONES.
Fecha de entrega: 21/09/11. La Teoría de Colas es el estudio de la espera en las distintas modalidades. El uso de los modelos de colas sirve para representar.
RIESGO, RENDIMIENTO Y VALOR
MÉTODOS CUANTITATIVOS Y SIMULACIÓN
INSTITUTO TECNOLOGICO DE VILLAHERMOSA
UNIDAD II LINEAS DE ESPERA
Modelos de líneas de espera ó Teoría de colas.
Definición. Una Cola es una línea de espera y la teoría de colas es una colección de modelos matemáticos que describen sistemas de líneas de espera particulares.
Líneas de Espera: Teoría de Colas Curso Métodos Cuantitativos Prof. Lic. Gabriel Leandro
Transcripción de la presentación:

Medidas de Desempeño Teoría de Colas Investigación de Operaciones 2

Medida del performance de los sistemas de colas El performance puede ser medido concentrándose - Los clientes en la cola - Los clientes en el sistema Los períodos transitorios y estáticos complican el análisis del tiempo de atención.

l< m l< m1 +m2+…+mk l< km Un período transitorio ocurre al inicio de la operación. - Un comportamiento transitorio inicial no es indicado para un largo período de ejecución. Un período estacionario sigue al período transitorio. - En un período estacionario , la probabilidad de tener n clientes en el sistema no cambia a medida que transcurre el tiempo. - De acuerdo a lo anterior, la tasa de llegada puede ser menor que suma de las tasas de atención efectiva. l< m l< m1 +m2+…+mk l< km Para un servidor Para k servidores Para k servidores con tasa se serv. m cada uno

Estado del sistema de colas En principio el sistema está en un estado inicial Se supone que el sistema de colas llega a una condición de estado estable (nivel normal de operación) Existen otras condiciones anormales (horas pico, etc.) Lo que interesa es el estado estable

Desempeño del sistema de colas Para evaluar el desempeño se busca conocer dos factores principales: El número de clientes que esperan en la cola El tiempo que los clientes esperan en la cola y en el sistema

Medición del Rendimiento de las Colas Los modelos de colas ayudan a los administradores a tomar decisiones para balancear los costos de servicio deseables con los costos de espera en la línea. Los principales factores que se evalúan en estos modelos son: Tiempo promedio que cada cliente u objeto permanece en la cola Longitud de cola promedio Tiempo promedio que cada cliente permanece en el sistema (tiempo de espera + tiempo de servicio). Número de clientes promedio en el sistema. Probabilidad de que el servicio se quede vacío Factor de utilización del sistema Probabilidad de la presencia de un específico número de clientes en el sistema.

Medida del performance en periodos estacionarios . P0 = Probabilidad de que no existan clientes en el sist. Pn = Probabilidad de que existan n clientes en el sistema. L = número de clientes promedio en el sistema. Lq = número de clientes promedio en la cola. W = Tiempo promedio de permanencia de un cliente en el sistema. Wq = Tiempo promedio de permanencia de un cliente en la cola. Pw = Probabilidad de que un cliente que llega deba esperar para ser atendido. r = Tasa de uso de cada servidor (porcentaje del tiempo que cada servidor es ocupado).

Medidas del desempeño del sistema de colas Número esperado de clientes en la cola Lq Número esperado de clientes en el sistema Ls Tiempo esperado de espera en la cola Wq Tiempo esperado de espera en el sistema Ws

Medidas del desempeño del sistema de colas: fórmulas generales

L = l W Lq = l Wq L = Lq + l / m Formulas - Las fórmulas representan las relaciones entre L, Lq, W, y Wq. - Estas fórmulas se aplican a sistemas que cumplen con las siguientes condiciones: * Sistemas de colas simples * Los clientes llegan según una tasa finita de llegada * El sistema opera bajo las condiciones de períodos estacionarios. L = l W Lq = l Wq L = Lq + l / m Para el caso de una población infinita.

Medidas del desempeño del sistema de colas: ejemplo Suponga una estación de gasolina a la cual llegan en promedio 45 clientes por hora Se tiene capacidad para atender en promedio a 60 clientes por hora Se sabe que los clientes esperan en promedio 3 minutos en la cola

Medidas del desempeño del sistema de colas: ejemplo La tasa media de llegadas  es 45 clientes por hora o 45/60 = 0.75 clientes por minuto La tasa media de servicio  es 60 clientes por hora o 60/60 = 1 cliente por minuto

Medidas del desempeño del sistema de colas: ejemplo

Medidas del desempeño del sistema de colas: ejercicio Suponga un restaurant de comidas rápidas al cual llegan en promedio 100 clientes por hora Se tiene capacidad para atender en promedio a 150 clientes por hora Se sabe que los clientes esperan en promedio 2 minutos en la cola Calcule las medidas de desempeño del sistema

Probabilidades como medidas del desempeño Beneficios: Permiten evaluar escenarios Permite establecer metas Notación: Pn : probabilidad de tener n clientes en el sistema P(Ws ≤ t) : probabilidad de que un cliente no espere en el sistema más de t horas

Factor de utilización del sistema Dada la tasa media de llegadas  y la tasa media de servicio , se define el factor de utilización del sistema . Generalmente se requiere que  < 1 Su fórmula, con un servidor y con s servidores, respectivamente, es:

Factor de utilización del sistema - ejemplo Con base en los datos del ejemplo anterior,  = 0.75,  = 1 El factor de utilización del sistema si se mantuviera un servidor es  = / = 0.75/1 = 0.75 = 75% Con dos servidores (s = 2):  = /s = 0.75/(2*1) = 0.75/2 = 37,5%