Econometría Aplicada: Series de Tiempo

Slides:



Advertisements
Presentaciones similares
DISEÑO DE EXPERIMENTOS EXPERIMENTOS DE COMPARACIÓN SIMPLE
Advertisements

Regresión mínimo cuadrada (II)
PRACTICAS SOBRE LA MODELIZACIÓN DE SERIES TEMPORALES
Análisis de Datos en Economía
Regresión mínimo cuadrada (I)
ESTADISTICA INFERENCIAL
Modelos de Variable Dependiente Binaria -Logit y Probit-
Capitulo 9: Modelos unívariados de series temporales
Pronósticos, Series de Tiempo y Regresión
Pronósticos, Series de Tiempo y Regresión
Pruebas de Estacionariedad
Estimación: de una Función de Demanda Mensual por Emisión Monetaria ( ) para Honduras, mediante modelos Econométricos, serie de tiempo y Pronostico.
MANUAL DE LABORATORIO DE CÓMPUTO ECONOMETRÍA I HETEROSCEDASTICIDAD
REGRESION Y CORRELACION LINEALES. REGRESION LINEAL SIMPLE Finalidad Estimar los valores de y (variable dependiente) a partir de los valores de x (variable.
Pruebas de Especificación en el Modelo de Regresión Múltiple
FACULTAD DE ECONOMÍA UNAM Maestría en Economía
MODELO DE REGRESIÓN MÚLTIPLE
SERIES UNIVARIADAS Toda institución, ya sea la familia, la empresa o el gobierno, tiene que hacer planes para el futuro si ha de sobrevivir y progresar.
Capitulo 7: Autocorrelación
MANUAL DE LABORATORIO DE CÓMPUTO ECONOMETRÍA I MULTICOLINEALIDAD
ESTRATEGIAS Y DISEÑOS AVANZADOS DE INVESTIGACIÓN SOCIAL
Econometria 2. Modelo de Regresión Lineal Simple
INTRODUCCIÓN A LAS SERIES DE TIEMPO
Capitulo 10: La metodología Box-Jenkins
Regresión y correlación
Estadística Administrativa II
CAMBIO ESTRUCTURAL INDICE DE LA PRESENTACIÓN.
CONTRASTE Y VALIDACIÓN DE UN MODELO
Estadística Descriptiva: 4. Correlación y Regresión Lineal
Estadística Descriptiva: 4. Correlación y Regresión Lineal Ricardo Ñanculef Alegría Universidad Técnica Federico Santa María.
Regresión lineal Es un modelo matemático para predecir el efecto de una variable sobre otra, ambas cuantitativas. Una variable es la dependiente y otra.
Regresión Lineal Simple
9 Regresión Lineal Simple
División de Estudios Políticos, CIDE
Estadística 2010 Maestría en Finanzas Universidad del CEMA Profesor: Alberto Landro Asistente: Julián R. Siri.
Las variables son cualesquiera: Se esperaría que: crece X1 implicará decrece Y crece X2 implicará decrece Y crece X3 implicará decrece Y Hay que justificar.
PROBLEMAS ECONOMETRICOS
CONTRASTE Y VALIDACIÓN DE UN MODELO
TIPOS DE MODELOS DE REGRESIÓN Y SUPUESTOS PARA EL MODELO A
Previsión de Ventas. Métodos no paramétricos Previsión de Ventas. Tema 2. 1 Antonio Montañés Bernal Curso
Pronósticos, Series de Tiempo y Regresión
Pronósticos, Series de Tiempo y Regresión
SERIES TEMPORALES.
SERIES DE TIEMPO INTEGRANTES :.
Representantes de casilla y voto presidencial: un análisis preliminar Dr. Javier Aparicio División de Estudios Políticos CIDE
ESTADÍSTICA BÁSICA EN ECOLOGÍA EVOLUTIVA Juan J. Soler Cruz Estación Experimental de Zonas Áridas Almería.
Pronósticos, Series de Tiempo y Regresión
Métodos de calibración: regresión y correlación
Econometría III Esquema del trabajo de ordenador. Curso
Titular: Agustín Salvia
LOGO Econometría III Esquema del trabajo de ordenador. Curso Parte 3. Análisis de cointegración y formas de los modelos.
Herramientas básicas.
VARIABLE DEPENDIENTE DICOTOMICA. Hemos estudiados casos donde las variables dicotómicas actuaban como regresores, variables independientes o que explican.
LOGO Econometría III Esquema del trabajo de ordenador. Curso Parte 2. Estimación inicial por MCO y análisis del orden de integración.
Índice: Introducción Conceptos básicos Procesos elementales
Regresión lineal múltiple
CO-2124 Análisis de Varianza con Un Criterio de Clasificación En clases anteriores se deseaba determinar si existían diferencias entre las medias de dos.
COMPARACION DE MEDIAS Para comparar media utilizando la prueba T hay Ttres opciones diferentes utilizando contrastes de hipotesis sobre : PARA UNA MUESTRA.
Análisis de los Datos Cuantitativos
Regresión Lineal Simple
MODELOS DE PRONOSTICOS Primer semestre 2010 Modelo de Regresión con dos variables.
Unidad 4 Análisis de los Datos.
Estadística Administrativa II
Clase 17 Introducción a la Estadística Universidad de la República Centro Universitario Regional del Este Pablo Inchausti Licenciatura en Gestión Ambiental.
ESTADISTICA DESCRIPTIVA BIVARIADA MEDIDAS DE RELACIÓN ENTRE VARIABLES CUANTITATIVAS.
Introducción a la Estadística Inferencial con SPSS Juan José Igartua Perosanz Universidad de Salamanca
REGRESIÓN LINEAL SIMPLE TEMA INTRODUCCIÓN Determinar la ecuación de regresión sirve para: – Describir de manera concisa la relación entre variables.
1 REGRESIÓN CON VARIABLES DICOTÓMICAS TEMA 1 (CONTINUACIÓN)
MSc. Daisy Espallargas Ibarra
TEMA 7 ANÁLISIS DE LOS RESULTADOS TEMA 7 ANÁLISIS DE LOS RESULTADOS.
Transcripción de la presentación:

Econometría Aplicada: Series de Tiempo DR. PELAYO DELGADO TELLO

MODELOS MULTIVARIADOS DE SERIES DE TIEMPO Tienen un orden temporal Se debe tener en cuenta que el pasado puede afectar el futuro. Los datos son aleatorios (en el sentido que uno no sabe que valor va a tomar en el futuro). Las variables generalmente tienen tendencia. Las variables con periodo temporal menor a un año presentan un comportamiento estacional Los logaritmos y las variables ficticias son utilizados frecuentemente.

MODELOS MULTIVARIADOS DE SERIES DE TIEMPO Yt : variable dependiente en el instante t X1,t Variable independiente 1 en el insatanete t Et : error en el instante t

Problemas Frecuentes en modelos con series de Tiempo Estacionalidad de las variables Quiebre estructural Autocorrelación Heterocedasticidad (con menor frecuencia en este tipo de modelos)

EJEMPLO FUENTE DATOS Los datos han sido simulados a partir de un reporte de ventas y gastos en publicidad de la revista coyuntura económica del mes de julio del 2010.

Análisis Preliminar de las series Análisis Grafico Son crecientes en el tiempo Pueden presentar estacionalidad Tienen una alta volatilidad Las ventas puede presentar un quiebre estructural en tendencia e intercepto

Preparación de Datos Primero se debe desestacionalizar las variables. En eviews: Abrir la variable Ingresar a la opción: Proc/Seasonal Adjustment/Census X12

Se debe selecciónar el método de desestacionalización (multiplicativo o Aditivo) Y también se debe seleccionar las salidas que se desea (Variable ajustada estacionalmente

Nuevas variables desestacionalizadas Después de haber desestacionalizado las variables en el Workfile aparecerá, las nuevas variables sin el componente estacional

Variables Desestacionalizadas La variable desestacionalizada, regula las variaciones estacionales innecesarias de la variable (estas luego se pueden incrementar en el resultado final) Y sigue mantiene las características iniciales de la variable original.

VARIABLES EN LOGARITMOS Para transformar una variable en logaritmos se debe seguir las siguientes instrucciones. En eviews Series lventas = log(ventas_sa) Series lpro = log(pro_sa) Series lpub = log(pub_sa)

PRESENTACION GRAFICA Las variables en logaritmos disminuyen la volatilidad de las variables. Su análisis es en porcentajes (Elasticidades análisis de sensibilidad)

Modelo sin desestacionalizado Modelo desestacionalizado Análisis Económico: Ambos modelos tienen los signos esperados. Análisis Estadístico: Análisis de significancia individual: Aparentemente el modelo desestacionalizardo es mejor dado que sus dos variables explicativas son significativas, mientras que el modelo desestacionalizado, muestra que la variable publicidad no es significativo. Análisis grupal: El R2 del modelo desestacionalizado es mejor ,al igual que el F-estadístico

Problemas de Estabilidad estructural Como se explico anteriormente, los modelos de series de tiempo frecuentemente presentan problemas de quiebre estructural. Para detectar el quiebre estructural se utiliza el test gráfico de CUSUM y CUSUM2, la idea de este test, es que si SCR (suma de los residuos recursivos al cuadrado) sobrepasan las líneas de confianza entonces existe problemas de quiebre estructural

PROCEDIMEINTO E-VIEWS Regresionar el modelo View Estability Tests Recursive estimates CUSUM o CUSUM squares test Okey

Problemas de quiebre estructural Modelo desestacionalizado Modelo Sin desestacionalizar Según el test de Cusum y Cusum2: Ambos modelos presentan problemas de quiebre estructural.

CONTRASTES DE CHOW El contraste de predicción de Chow también se utiliza para detectar quiebre estructural. Este contraste de Chow divide los datos en dos partes (se le debe dar la fecha de corte) y regresiona por separado y luego compara los residuos obtenidos, si estos son distintos entonces existe quiebre estructural. La Hipótesis Nula de este Contraste de Chow es el modelo tiene estabilidad paramétrica. Y la hipótesis alterna, existe problemas de quiebre estructural(no tiene estabilidad paramétrica)

CONTRASTE DE CHOW EN EVIEWS Primero se debe regresionar. Se debe saber la fecha de corte >view / stability test / Chow Breakpoint test Se debe introducir la fecha de quiebre Se rechaza la hipótesis nula cuando la probabilidad del F-stadistico es menor que el 5% En este caso se concluye que existe quiebre.

MODELOS SIN PROBLEMA DE QUIEBRE ESTRUCTURAL Modelo desestacionalizado Modelo Sin desestacionalizar

PROBLEMAS DE AUTOCORRELACIÓN Se da cuando los residuos del modelo están autocorrelacionados. No se cumple que las cov(ei,ej)=0 u,u tiempo u,u Fig.1.1 Fig.1.2 Fig.1.3 Fig.1.4

Consecuencias Como en el caso de la heterocedasticidad, en presencia de autocorrelación los estimadores MCO continúan siendo lineales-insesgados al igual que consistentes, pero dejan de ser eficientes.

Estadístico Durbin Watson COMO DETECTAR Estadístico Durbin Watson Ho: No existe autocorrelación de 1er orden Ha: Existe autocorrelación de 1er orden. d 4 4- dL 4- dU dU dL Rechácese H0 evidencia de auto correlación positiva Zona de inde- cision No se rechace H0 o H0 o ambas Rechácese H0 evidencia de auto correlación negativa Decisión práctica: Si DW esta alrededor de dos no existe autocorrelación

Para el caso práctico Modelo desestacionalizado Modelo Sin desestacionalizar En ambos modelos existe problemas de autocorrelación de primer orden debido a que el estádistico DW es menor de 2.

Para el caso práctico Modelo desestacionalizado Modelo Sin desestacionalizar En ambos modelos existe problemas de autocorrelación de primer orden debido a que el estádistico DW es menor de 2.

PRUEBA DEL CORRELOGRAMA RESIDUAL Esta prueba se usa para determinar la estructura autor regresiva de orden . Pasos: 1.- Regresionar el modelo 2.- VIEW 3.- RESIDUAL TEST 4.- CORRELOGRAM SQUARED RESIDUALS 5.- OBVSERVAR EL GRAFICO Y DETERMIANR EL ORDEN

Modelo desestacionalizado Modelo Sin desestacionalizar En el modelo sin desestacionalizar, se puede observar que existe problemas de autocorrelación de primer y segundo orden En el modelo desestacionalizado, se puede observar que existe problemas de autocorrelación de primer y sexto orden, (aunque el sexto rezago es muy alto y no se podría considerar)

PROBLEMAS DE HETEROCEDASTICIDAD Hasta el momento hemos realizado el análisis de los dos modelos (El modelo sin desestacionalizar y el modelo Desestacionalizado) y no se ha observado claramente el beneficio de trabajar con datos desestacionalizados. El test de White para identificar problemas de heterocedasticidad podría definir con cual de los dos modelos podemos quedarnos.

TEST DE WHITE PARA IDENTIFICAR HETEROCEDASTICIDAD El modelo sin desestacionalizar presenta problemas de heterocedasticidad, debido a que su probabilidad F-stat es menor al 5% (se rechaza la hipotesis de homocedasticidad El modelo desestacionalizado no presenta problemas de heterocedasticidad, y por lo tanto sus resultados son mucho mas eficientes.

CONTRASTACIÓN DE HIPÓTESIS Los gastos en publicidad y promoción han influido positivamente sobre las ventas. Si el gasto en publicidad se incrementa en mil soles entonces las ventas se incrementarán en 36.94 De la misma manera Si el gasto en promoción se incrementa en mil soles entonces las ventas se incrementarán en 34.24

Segunda Hipótesis: El gasto en publicidad influye en la misma magnitud que el gasto en promoción. Para contrastar esta hipótesis, en primer lugar hay que tener en cuenta dos periodos. Antes de octubre del 2005 y después del 2005. Para esto se debe hacer un test de Wald, En este caso el resultado indica que no existe evidencia estadística de que ambos efectos fueran distintos (no se puede rechazar la hipótesis nula

Tercera Hipótesis: Los incrementos de los ventas en los dos últimos años se deben en mayor proporción a los gastos en promoción. El coeficiente que considera el quiebre estructural es significativo y positivo, este resultado indica que en los dos últimos años el gasto de mil soles en promoción a incrementado las ventas en cerca de 15 mil soles adicionales.

PRONÓSTICOS EN MODELOS MULTIVARIADOS Para realizar un proyecciones en los moduelos mutivariados se debe tener en cuenta que: Se debe tener un modelo que se ajuste bien para las proyecciones de la variable dependiente. Se debe conocer los valores futuros de las variables independientes.

PROYECCIÓN Para proyectar se debe tener un buen nivel de ajuste del modelo. Para observar esto se debe de realizar un análisis del poder predictivo del modelo. En Eviews Regresionar el mejor modelo Forecast (presionar el boton Forecast)

Para evaluar si un modelo tiene un buen poder predictivo, se analiza el Coeficiente de desigualdad de Theil, este debe estar cercano a cero para que el modelo sea un buen modelo para predecir. Por otro lado la proporción de covarianza debe ser cercano a 1.

PREDICCIÓN Si el modelo es bueno para predicir, entonces se debe de seguir las siguientes pasos. Expandir la muestra (recomendable solo uno o dos periodos hacia delante). >Expand 2002.1 2007.6 Ingresar valores para las variables independientes

Junio 2007 Julio 2007 Gastos Promoción 40 42 Gastos Publicidad 27 29 Variable dummy 1

En la ventana de predicción se debe introducir el periodo que se desea proyectar. También se debe ingresar la variable en la cual se van a depositar las predicciones

Los valores proyectados serán Junio 2007 Julio 2007 Ventas 3107.40 3231.16

THE END