Aplicaciones: Defectos en semiconductores Sustitución catiónica en polvos nanocristalinos
t(ns)
Aplicaciones: Volúmenes libres en polímeros Polivinilsiloxanos (PVS) POSITRONFIT CONTIN Alessandrini, SLAP 2004, Spain
Aplicaciones: Volúmenes libres en polímeros Polímeros de Poli(Acrilato de Etilo) Se determinó el tamaño de los huecos: R~2.5 Å M.A.Hernández-Fenollosa, APHYS 2003, Spain
Aplicaciones: Volúmenes libres en polímeros Estructuras CB[n] to-Ps en función del tamaño del hueco en las CB[n] Variación de tave con el llenado de las cavidades para CB[7]
Application of positron annihilation techniques for semiconductor studies Techniques: - Doppler broadening (depth profile) - lifetime (in bulk) - coincidence (in bulk) Samples: - He-implanted silicon - Czochralski-grown silicon low-k materials - SiO2 and GeO2 conducting glasses
Positron identity e+ is antiparticle of e- : Ps is light H : mass 511.003 keV/c2 spin ½ opposite Q opposite μ stable in vacuum (>2x1021y) Ps is light H : Energy E= ½ Ry p-Ps: τ=125 ns, 2γ o-Ps: τ=142 ns, 3γ
Positron history History of “slow” positrons 1930 – e+ postulated by Dirac 1932 – discovered in cosmic rays by Anderson “out of 1300 photographs of cosmic tracks, 15 were od positive particles which could not have a mass greater as that of the proton” 1950 – Madanski-Rasetti try to moderate 1951 – evidence of Ps atom (Deutsch) 1958 – moderated e+ , ε=3x10-8 (Cherry) 1979 – single crystal moderator (Mills) 1980 – brightness enhancement (Mills)
Positron slowing down
Positron sources Moderators Radioactive nuclides W (100): ε= 4x10-4 Solid Ne: ε=1% ?
Positrons in Solid State Physics
Trento Positron Annihilation Set-up
Trento-München Positron Microscope E=500 eV – 25 keV spot = 2 μm
Positron walking
Positron in a crystal
Espectroscopía de aniquilación de positrones
Positron lifetime technique τdefect > τbulk
Doppler broadening technique ptot=pe+pp ΔE = cpz / 2 S=(E0±0.85keV)/(E0±4.25keV)
Doppler-broadening: normalization
He bubbles in Si He – implantation n=0.5x1016cm2 NO! n=2x1016cm2 YES!
He bubbles in Si
He bubbles in Si
He bubbles in Si quantization of S - values
Doppler-coincidence technique
Doppler-coincidence spectra
D-C - chemical sensitivity
D-C - chemical sensitivity
Si – Czochralski grown cO≈ 1018 cm-3 cB≈ 1016 cm-3
Oxygen in Cz-grown silicon thermal donors precipitates new donors “as grown”: annealed at 450°C
Oxygen in Cz-grown silicon
Oxygen in Cz-grown silicon
Oxygen in Cz-grown silicon
Conducting glasses (SiO2+Bi2O3) AFM picture of Si-Pb glass; a) freshly broken; b) Annealed at 580ºC for 21h
Conducting glasses (SiO2+Bi2O3)
Conducting glasses (SiO2+Bi2O3)
Conducting glasses (SiO2+PbO2)
Conducting glasses (GeO2+Bi2O3)
Conducting glasses (SiO2+Bi2O3)
Silica based, low ε materials - structure From K.Maex et al. J. Appl. Phys. 11, 93, 8793
low ε materials - annealing
low ε materials - annealing
low ε materials - ageing
Positron Spectroscopy in Solid State Physics Intense beams ! Future ? Auger Spectroscopy Low-energy Positron Diffraction
Positron Spectroscopy in Solid State Physics Intense beams ! Future ? Auger Spectroscopy Low-energy Positron Diffraction