Cual de las siguientes vitaminas necesita la presencia de bilis a nivel intestinal para poder absorberse: VITAMINA K b) NIACINA.

Slides:



Advertisements
Presentaciones similares
ENZIMAS: PROTEINAS TRIDIMENSIONALES
Advertisements

ENZIMAS Beta lactamasa + penicilina
BIOQUÍMICA Enzimología.
Proteínas MSc. Bioq. María Bárbara De Biasio Facultad de Ciencias Veterinarias Asignatura: Bioquímica.
CICLO DEL ACIDO CITRICO
Las reacciones bioquímicas de la célula
Biocatalizadores o enzimas
INTRODUCCIÓN AL METABOLISMO. ATP Y ENZIMAS
ACTIVIDAD ENZIMÁTICA.
Actividad enzimática
Funciones de las Proteínas
CICLO DEL ACIDO CITRICO
EQUIPO DOCENTE Prof. Responsable: Dra. Irma Gladis Rezza de Acosta
Introducción: Nomenclatura y clasificación.
Introducción: Nomenclatura y clasificación.
ENZIMAS.
Dra. Judith García de Rodas Salón 207
1 KM 1 1 Vo= Vmax [S] + Vmax Y = m x + b = m = b.
ENZIMAS CATALIZADORES BIOLÓGICOS QUE:
CINÉTICA ENZIMÁTICA.
¿Cómo modifican la cinética de las reacciones?
ENZIMAS Catalizadores Biológicos.
ENZIMAS 1.
ENERGÍA y METABOLISMO Unidad 3
Biología 2º Bachillerato
Fosforilación a nivel de sustrato Fosforilación oxidativa
Enzimas.
ENZIMAS.
INDICE ENZIMAS: Naturaleza Química- Propiedades Generales- Nomenclatura y Clasificacion- Coenzimas y Grupos Prostéticos. Actividad Enzimática: Unidad de.
TEMA 10: REGULACIÓN DE LA ACTIVIDAD ENZIMÁTICA
MORFOFISIOLOGÍA HUMANA I.
Bolilla 2: PROGRAMA ANALITICO Y/O DE EXAMEN
QUIMCA BIOLOGICA- EQUIPO DOCENTE
EQUIPO DOCENTE Prof. Responsable: Dra. Ana Anzulovich
ENZIMAS.
Tema 7 ENZIMAS.
PROGRAMA ANALITICO Y/O DE EXAMEN
Prof. Lorena Bruna Ing. en Alimentos
Las enzimas.
ENZIMAS.
ENERGÍA y METABOLISMO Unidad 3
BOLILLA 1 METABOLISMO. Principales nutrientes de autótrofos y heterótrofos. Catabolismo. Anabolismo. ENZIMAS: Naturaleza Química. Propiedades Generales.
Instituto Tecnológico de Tuxtla Gutiérrez
UNIDAD 6. METABOLISMO 6.1. Visión general del Metabolismo Celular.
ENZIMAS Bioquimica, CHEM 4220 Universidad Interamericana de PR Recinto de Bayamón J. Roberto Ramirez Vivoni, Ph.D. Alberto L. Vivoni Alonso, Ph.D. abril.
LIC. NUTRICIÓN QUÍMICA BIOLÓGICA 2014.
EL CONTROL DE LAS ACTIVIDADES CELULARES
ENZIMAS Los catalizadores biológicos son macromoléculas llamadas enzimas La mayoría de las enzimas son proteínas, con la excepción de un pequeño grupo.
VIAS METABÓLICAS. ENZIMAS
ENZIMAS.
Enzimas Marta Gutiérrez del Campo.
ENZIMAS.
Cátedra de Bioquímica-UNNE 2015
Dpto de Bioquímica, Biología Molecular y Farmacología
Enzimas: Una clase especial de proteínas
POR: Laura Domínguez Felipe Castro Agustín Angulo Juan Esteban Baena
Universidad de Carabobo Facultad de Ciencias de la Salud Escuela de Medicina“Dr. Witremundo Torrealba" Departamento de Fisiología y Bioquímica Integrantes:
BIOENERGÉTICA: METABOLISMO Y ENZIMAS
ENZIMAS 1. En una reacción catalizada por un enzima:  una reacción catalizada por un enzima: La sustancia sobre la que actúa el enzima se llama sustrato.
ENZIMAS.
LIC. NUTRICIÓN QUÍMICA BIOLÓGICA 2014.
Conjunto de reacciones químicas que se llevan a cabo en la célula
Enzimas Fotosíntesis y sus efectos Digestión Respiración celular
LIC. NUTRICIÓN QUÍMICA BIOLÓGICA 2015.
TEMA 5. BIOCATALIZADORES: ENZIMAS
ENZIMAS.
BOLILLA 1 ENZIMAS: Naturaleza Química- Propiedades Generales- Nomenclatura y Clasificacion- Coenzimas y Grupos Prostéticos. Actividad Enzimática: Unidad.
Bolilla 3 Enzimas Caracteres generales. Importancia del estudio de las enzimas en los alimentos. Nomenclatura y clasificación. Coenzimas. Compartimentalización.
 METABOLISMO. Principales nutrientes de autótrofos y heterótrofos. Catabolismo. Anabolismo. ENZIMAS: Naturaleza Química. Propiedades Generales. Nomenclatura.
Glicólisis Ciclo de Krebbs. Ciclo del ácido tricarboxílico (Ciclo de Krebs) (Ciclo del ácido cítrico)
Transcripción de la presentación:

Cual de las siguientes vitaminas necesita la presencia de bilis a nivel intestinal para poder absorberse: VITAMINA K b) NIACINA

Vitamina A b) Vitamina B12 La haptocorrina es una proteína que se encuentra en saliva e intestino, tiene capacidad para unirse a: Vitamina A b) Vitamina B12

Calcitriol Acido retinoico NAD Cual de los siguientes compuestos corresponde a la forma activa de la vitamina D: Calcitriol Acido retinoico NAD

¿Los iones Calcio actúan manteniendo el potencial de membrana? La principal función del fosfato de piridoxal es ser un activo antioxidante? ¿Los iones Calcio actúan manteniendo el potencial de membrana?

A través de un sistema de bombas, con gasto de ATP, Cual de los siguientes iones es expulsado hacia el líquido extracelular? Potasio Sodio Hierro

Cual de los siguientes iones se encuentra en mayor concentración en líquido extracelular y regula presión osmótica: Cloruro Potasio

BOLILLA 2 ENZIMAS: Naturaleza Química- Propiedades Generales- Nomenclatura y Clasificacion- Coenzimas y Grupos Prostéticos. Complejo ES- Ecuación de Michaelis Menten y Ecuación de Lineweaver Burk- Inhibición competitiva y no Competitiva. Actividad Enzimática: Unidad de enzima- Actividad específica- Actividad molecular Factores que afectan la actividad enzimatica: [Enzima]- pH – T- [S] Regulación Enzimática: Enzimas alostéricas (propiedades y cinética)- Zimógenos- Modulación Covalente Isoenzimas: Propiedades e importancia.

QUE SON LAS ENZIMAS La mayoría de las ENZIMAS (E) son PROTEINAS Las ENZIMAS tienen la capacidad de AUMENTAR LA VELOCIDAD de las reacciones, por ello se denominan CATALIZADORES BIOLOGICOS La sustancia sobre las cuales actúan se denominan SUSTRATO

Ningún ser vivo puede vivir sin las ENZIMAS La mayoría de las reacciones deben ser catalizadas para que ocurran en el tiempo y el momento que la célula lo requiere. Las enzimas deben ser sintetizadas correctamente, con las estructuras proteicas: primaria, secundaria, terciaria y cuaternaria si la tuviera Cualquier alteración de la síntesis de estas proteínas puede llevar a una patología A veces estas alteraciones puede solucionarse con cambios en la dieta.

Transformaciones mediadas por enzimas Transformación de moléculas complejas en moléculas simples y viceversa ENZIMAS PAN n (GLUCOSA) ALMIDON PAPAS ENZIMAS ARROZ (GLUCOSA)n GLUCOGENO

CARNES ENZIMAS SOJA PROTEINAS n (AMINOACIDOS) LECHE ENZIMAS NUEVOS AMINOACIDOS, OTROS COMPUESTOS NITROGENADOS

PANCETA ENZIMAS MONO TRIGLICERIDOS CHIZITOS GRASAS CHORIZOS ENZIMAS GLICEROL +3 AC.GRASOS TRIGLICERIDOS

REACCION EZIMATICA E + S E + P Sustrato Enzima Complejo ES Producto

- P GLUCOSA GLUCOSA-6P ATP ADP D-Glucosa Glucoquinasa

CARACTERISTICAS DE LAS ENZIMAS SITIO DE UNION AL SUSTRATO (Sitio Activo) Uniones no Covalentes: Puente de hidrógeno Hidrofóbicas Electrostáticas SON ESPECIFICAS NECESITAN DE FACTORES ENZIMATICOS: Inorgánicos (metales) y orgánicos (Coenzimas)

ESPECIFICIDAD DE LAS ENZIMAS ALTA ESPECIFICIDAD Único sustrato Lactato Deshidrogenasa (LDH) LACTATO Grupo de sustratos ESPECIFICIDAD RELATIVA Km diferente Hexoquinasas HEXOSAS glucosa, manosa y fructosa

DENOMINACION DE LAS ENZIMAS NOMBRE DEL SUSTRATO O DEL PRODUCTO CON LA TERMINACION ASA: sacarasa, ureasa, amilasa ALGUNAS TIENEN NOMBRES arbitrarios ptialina salival, pepsina del jugo gástrico CADA ENZIMA TIENE UN NOMBRE ASIGNADO POR LA COMISION INTERNACIONAL DE ENZIMAS

Tipos de reacciones catalizadas por enzimas Oxido-reducción Rotura y formación de enlaces C-C Reorganizaciones internas Transferencia de grupos Reacciones de condensación

Clase - subclase - subsubclase - nº de orden CLASIFICACION Clase - subclase - subsubclase - nº de orden Lactato 1 1 1 27 deshidrogenasa 1-OXIDORREDUCTASAS Alcohol deshidrogenasa (EC 1.1.1.1) 2. TRANSFERASAS Hexoquinasa (EC 2.7.1.2)

3. HIDROLASAS 4. LIASAS 5. ISOMERASAS 6. LIGASAS Carboxipeptidasa A (EC 3.4.17.1) 4. LIASAS Piruvato descarboxilasa (EC 4.1.1.1) 5. ISOMERASAS Fumarasa ó malato isomerasa (EC 5.2.1.1) 6. LIGASAS Piruvato carboxilasa (EC 6.4.1.1)

Ejemplos de Enzimas que requieren iones metálicos como cofactores Fe++ ó Fe+++ Citocromo oxidasa Catalasa Peroxidasa Zn++ Anhidrasa carbónica Hexoquinasa Glucosa-6-fosfatasa Piruvato quinasa Mg++ K+ Piruvato quinasa

Grupos monocarbonados Niacina NAD, NADP Ion Hidruro (:H -) PDH GAD Electrones Riboflavina (Vit.B2) FAD, FMN SDH PDH, TC Tiamina (Vit. B1) Aldehídos PP-tiamina Grupos aciloS Tiolasa Ac. pantoténico Coenzima A Ac. fólico Grupos monocarbonados Ser-Treon. Deshidrat. FH4 Piridoxina (B6) P-piridoxal Grupos aminos GPT PDH Ac.lipoico Lipoamida e- y grupos acilos

COENZIMA HOLOENZIMA APOENZIMA COENZIMAS ENZIMA TOTAL PROTEÍNA = APOENZIMA + ENZIMA TOTAL PROTEÍNA TERMOLÁBIL NO PROTEÍNICA TERMOESTABLE Transportadores de grupos funcionales COENZIMAS Transportadores de electrones

DISTRIBUCION DE LAS ENZIMAS COMPARTIMENTALIZACION: Diferentes localización dentro de la célula. SISTEMAS MULTIENZIMATICOS: Enzimas relacionadas agrupadas formando verdaderos complejos ENZIMAS MULTIFUNCIONALES: Una enzima que presenta distintos sitios catalíticos

mmol de S transformados mmol de S transformados/min ACTIVIDAD ENZIMATICA Unidades Internacionales Cantidad de enzima que cataliza la transformación de 1 umol de S por minuto Actividad Específica Actividad enzimática por cada miligramo de proteína presente en la muestra Actividad Molecular ó Numero de Recambio Moléculas de S convertibles en P por unidad de tiempo y por molécula de enzima U.I.E. = mmol de S transformados min 1 katal = 6 x 107 U.I.E. Actividad específica = U.I.E. mgr de proteína Actividad molecular = Mol de enzima mmol de S transformados/min

ACTIVIDAD ESPECIFICA A B + Prot.Tot: ∑ + Prot.Tot: ∑ + Prot.Tot: ∑ D específica U.I.E. mgr de proteína = Activ. Enzimática Prot. totales Prot.Tot: ∑

CINETICA ENZIMATICA

Representación de la ecuación de Michaelis - Menten Vo [S] Leonor Michaelis y Maud Menten

GRÁFICA DOBLE RECÍPROCA O DE LINEWEAVER-BURK Ordenada al origen = 1/Vmáx. Pendiente= Km/Vmáx Intersección c/eje x = - 1/Km

INHIBICION ENZIMATICA COMPETITIVA NO COMPETITIVA ACOMPETITIVA INHIBICION REVERSIBLE POR ENLACE COVALENTE (Análogos del estado de transición) INHIBIDOR SUICIDA DIFP Quimotripsina INHIBICION IRREVERSIBLE Penicilina Transpeptidasa Alopurinol Xantina oxidasa

INHIBICION REVERSIBLE INHIBICION COMPETITIVA E E + S ES E + P I EI I + [E] [I] [EI] Ki = S     KM ap = Km(1 + [I]/Ki)

Ejemplo de Inhibidor competitivo Succinato + FADH2 Fumarato + FAD+ Succinato deshidrogenasa COO- (CH2)2 COO- CH2 Succinato Malonato

v Gráfica de M-M Km Km ap [S] 1/v Gráfica de L-B 1/[S] -1/Km -1/Kmap

INHIBICION NO COMPETITIVA S E + S ES E + P + I EI + I ESI I E S I + S

Km [S] v Gráfica de M-M -1/Km 1/[S] 1/v Gráfica de L-B Vmáx ap.= Vmax.s/I      Km(1 + [I]/Ki)

Características de los diferentes tipos de inhibición reversible Tipo de El Inhibidor Efecto Efecto inhibición se une a s/Vmáx s/Km Competitiva E Ninguno Aumenta No competitiva E y ES Disminuye Ninguno Km c/I. = Km s/Inh. (1+ [I]/Ki) Vmáx c/I= Vmáx. s/Inh. / 1 + [I]/ Ki

Acción de inhibidores a distinta concentración COMPETITIVA NO COMPETITIVA Pendiente = Km / Vmáx

INHIBICION IRREVERSIBLE . Por unión covalente del inhibidor - Acetilcolinesterasa - Quimotripsina Enzima inactivada Diisopropilfluorfosfato (DFP)

INHIBICION IRREVERSIBLE . Inhibidor suicida Se une al sitio activo de la enzima y ésta cataliza la modificación del inhibidor a otro compuesto que permanece unido a la enzima. El ALOPURINOL es un inhibidor suicida que actúa sobre la enzima xantina oxidasa (degradación de purinas). Se forma el oxopurinol el cual queda unido a la enzima.

Factores que afectan la actividad enzimática pH Temperatura Concentración de Enzima Concentración de Sustrato

EFECTO DE LA CONCENTRACION DE SUSTRATO SOBRE LA VELOCIDAD INICIAL

Efecto de la concentración de enzima sobre la actividad Concentración saturante de sustrato, pH y temp. constantes

Influencia del pH sobre la actividad enzimática

Ejemplos de enzimas con diferentes pH óptimo

Influencia de la Temperatura sobre la actividad enzimática actividad por de la temperatura T(ºC) Actividad enzimática T. óptima de temperatura provoca desnaturalización

ISOENZIMAS Diferentes formas moleculares de una misma enzima. Son sintetizadas por genes diferentes Tienen diferente composición aminoacídica por lo que pueden separarse por electroforesis. Catalizan la misma reacción, actuando sobre el mismo sustrato para dar el mismo producto

Dos isoenzimas presentan en general diferentes valores de Km y Vmáx. Se encuentran ubicadas en diferentes compartimentos de la célula ó en diferentes tejidos. Son utilizadas en clínica para determinar el origen del tejido dañado

Lactato deshidrogenasa (LDH) Presenta 5 isoenzimas con distinta composición en cuanto a sus subunidades y c/u es específica de un tejido. H4 H3M H2M2 HM3 M4 M > Músculo H > Corazón

Ejemplo de isoenzima: Glucoquinasa y hexoquinasa Actividad enzimática Km. hexq Km. glucq [glucosa mmol/l

REGULACION DE LAS REACCIONES CATALIZADAS POR ENZIMAS REGULACION DE LA ACTIVIDAD DE LAS ENZIMAS ENZIMAS ALOSTERICAS REGULACION POR PROTEINAS REGULACION POR PROTEOLISIS REGULACION COVALENTE ENZIMAS INDUCIBLES REGULACION DE LA SINTESIS DE LAS ENZIMAS

MODULADORES POSITIVOS MODULADORES NEGATIVOS ENZIMAS ALOSTERICAS Enzima 1 2 3 4 Enzima 1 ENZIMA ALOSTERICA MODULADORES POSITIVOS MODULADORES NEGATIVOS

Bifurcación de una vía metabolica

PROPIEDADES DE LAS ENZIMAS ALOSTERICAS Poseen un sitio de unión a un metabolito regulador (sitio alostérico) La unión del metabolito a la enzima es de carácter reversible y no covalente. En general poseen dos o mas sitios reguladores. La mayoría posee dos o mas cadenas polipeptídicas o subunidades. En general tienen un comportamiento cinético sigmoideo

CINETICA DE UNA ENZIMA ALOSTERICA Curva Sigmoidea

Regulación de la actividad de la Aspartato transcarbamilasa (ATCasa) Aspartato (mM)

EJEMPLOS DE ENZIMAS ALOSTERICAS Hexoquinasa, Fosfofructoquinasa y Piruvato Quinasa Vía glicolítica AcetilCoA carboxilasa Biosíntesis de lípidos Aspartato Transcarbamilasa Biosíntesis de nucleó tidos pirimidínicos Glutamato Deshidrogenasa Degradación de aminoácidos Citrato sintasa, isocitrato y a-cetoglutarato deshidrogenasas Ciclo de Krebs

REGULACION POR MODIFICACION COVALENTE Fosforilasa fosfatasa 2 Pi 2 H2O Fosforilasa quinasa ATP ADP Fosforilasa b P -O-CH2 CH2- O- P Fosforilasa a (menos activa) (Cadena lateral de Ser) CH2- HO HO-CH2

REGULACION POR PROTEOLISIS Por eliminación de una cadena peptídica, enzimas inactivas se convierten en enzimas activas y viceversa. Las enzimas digestivas: pepsinógeno y quimotripsinógeno se convierten en las enzimas activas pepsina y tripsina. Suele ocurrir una activación secuencial produciéndose una cascada de activaciones. Ej. Coagulación sanguínea. ZIMOGENOS

REGULACION POR PROTEINAS Modifican la actividad de enzimas involucradas en el metabolismo celular. Por ej. Indirectamente activando o inhibiendo la actividad de la glutamina sintetasa. RNA polimerasa: Asn, Gln, Glu, Lys y Arg forman enlaces hidrógenos con las bases del DNA