Instrumentación de radiología analógica y digital Detección de rayos X

Slides:



Advertisements
Presentaciones similares
METODOLOGÍA DIAGNÓSTICA ESTUDIOS AUXILIARES
Advertisements

Tipos de cámara, ópticas y lentes
Almacenamiento Holográfico
Sonia Cabrejas y María Jáuregui
Componentes de una computadora
Teresa Monserrat Fuertes Sº Física Médica y P.R.
Yuseidis Ramírez Sadia Pereira Estefanny lance Carlos Hernández
Imagenología digital y PACS
República Bolivariana de Venezuela Ministerio Popular para la Educación Superior Universidad de los Andes Instituto Universitario de Ejido Radiología.
RAYOS X Diana Marcela Ochica Chaparro.
Tipo de revelados.
DIODO LASER LASER SEMICONDUCTOR.
Diferencias entre cámara analógica y cámara digital
HAZ DE RAYOS X Y FORMACION DE LA IMAGEN
Mallory Paola Pulido Cruz Grupo 8 No. de lista: 32 Código:
Adrián Hernández miranda
Monitores para diagnóstico en Imagenología médica
Principales componentes del computador
REDES I CARRERA DE INGENIERÍA DE SISTEMAS Ing. Moisés Toapanta, MSc. Guayaquil, mayo del 2014.
Tema 2 Interacción de la radiación con la materia
SISTEMAS DE RADIODIAGNOSTICO
NATURALEZA ELECTROMAGNETICA DE LA MATERIA
Sensores Remotos Juan Manuel Cellini
Desventajas de la radiografía convencional
Fotómetro Alberto Atlahuac Fajardo Velazquez Vicente Pascual Alonso Vazquez Angel Giovanni Reyes Montoya Instrumentación Analítica.
Taller de Fotometría Diferencial Sensores digitales Grupo de Astrometría y Fotometría (GAF)
Cámara digital.
“Instituto Nacional de Soyapango”
implicaciones principales de los rayos x
ESTRUCTURA ATÓMICA PROPIEDADES PERIODICAS DE LOS ELEMENTOS
Informática Médica: Procesamiento de imágenes
16/04/2017 Área 2 – Características Físicas de los equipos y haces de rayos X. Principio de funcionamiento de un equipo de rayos X
Dispositivos gráficos de salida
Televisores 3D José Luis León Hidalgo. Televisión 3D La Televisión 3D se refiere a un televisor que permite visualizar imágenes en 3 dimensiones, utilizando.
DISPOSITIVOS INTERNOS Y EXTERNOS DE UN COMPUTADOR
RRAYOS X. GNERALIDADES.
ANALISIS DE OBJETO EL TELEVISOR. CIENTIFICOS Maxwell predijo la existencia de ondas electromagnéticas. Maxwell predijo la existencia de ondas electromagnéticas.,
Carlos Francisco Pinto Guerrero David Antonio Burbano Lavao
Electrónica Médica FIEC-ESPOL Ing. Miguel Yapur. OSCILOSCOPIOS MEDICOS (Monitores) Respuesta de frecuencia pequeña. Máxima respuesta 100 Khz a 1 MHz El.
JUAN F. QUINTERO G2E26 Clase del 19 de mayo 2015
 La fotografía digital consiste en la obtención de imágenes mediante una cámara oscura, de forma similar a la Fotografía química.
Microscopía electronica
RAYOS X UN DESCUBRIMIENTO ACCIDENTAL. Guillermo Sánchez; Álvaro Baena Est. Ing. Mecatrónica Universidad Nacional de Colombia. INTRODUCCIÓNAPLICACIONESEMISION.
Universidad Nacional de Colombia
Scanning Electron Microscope
FUNDAMENTOS DE FÍSICA MODERNA RAYOS X
Facultad de Odontología
Realizado por: María Inmaculada Fernández Conde.
RAYOS X UN DESCUBRIMIENTO ACCIDENTAL.
Ciclo de conferencias sobre temas de interés general.
RAYOS X Universidad Nacional de Colombia Fundamentos de física moderna
 Nombre: Abel Calzadiaz Rodríguez.  Experiencia: 3 años trabajando en la Institución de Poliplaza.  Numero de teléfono: sección de laboratorios.
Jorge Ramos Real Francisco Alberto Damian Edgar Hugo sanchez
NOMBRES: Gonzalo Asturizaga Irusta Yussef Panoso Besmalinovick
Presentación de componentes MARIANA SÁNCHEZ Y MARÍA PAULA GRANDA 8C.
SISTEMAS DE RADIODIAGNOSTICO 03/11/2008. QUE SON LOS RAYOS X? Son un tipo de energía electromagnética contenida en fotones, similar a los rayos de luz.
La sensibilidad ISO, marca la cantidad de luz que necesita nuestra película para hacer una fotografía. Este concepto, que continua de la fotografía convencional,
RADIOLOGIA.
ALVAREZ GALARZA, CRISTIAN GABRIEL
CALIDAD DE IMAGEN Contraste, Nitidez y Densidad Br. Mendoza Pedro
Monitores para diagnóstico en Imagenología médica Daniel Geido Núcleo de Ingeniería Biomédica.
Hardware Ada García 2º D.
DISPOSITIVOS DE ENTRADA UNIDAD 1. MANEJA COMPONENTES DEL EQUIPO DE CÓMPUTO.
Hardware Parte física de una computadora. Dispositivos Es todo aquello que esta conectado a la computadora, los cuales tienen una función específica.
FUNCIONES PRINCIPALES INSTRUMENTACIÓN DE IMÁGENES DE SONIDO LESLIE A. PEREZ MALDONADO PROF. A GONZALES.
Funciones Principales del Sistema de ultrasonido
Introducción Necesitamos una fuente que emite RX (tubo de rayox x).
IV Curso de Radiografía de Tórax: Lo elemental para AP y SCCU
La Rx simple de Tórax es aun, y seguirá siendo, uno de los principales retos del diagnostico radiológico. La frecuencia de realización es muy alta, constituyendo.
RESONANCIA MAGNÉTICA núcleo de ingeniería biomédica
Transcripción de la presentación:

Instrumentación de radiología analógica y digital Detección de rayos X núcleo de ingeniería biomédica facultades de ingeniería y medicina universidad de la república Ing. Daniel Geido

Introducción Contamos con una fuente que emite RX (tubo de rayox x). Sabemos que existen propiedades en la materia que atenúan dichos rayos x en forma diferente según: Su número atómico. Su espesor. Su densidad. Veamos como detectar dichos rayos x atenuados y transformarlos en una imagen en una placa o en un monitor. El músculo esquelético se compone de numerosas células musculares. La excitación de estas células generan mediante mecanismos químicos la contracción o distencsión de los músculos. En organismos complejos existen dos sistemas para la integración de información y generación de respuestas: Sistema Endócrino: que envía las órdenes a través de hormonas que inyecta a la sangre, generando respuestas en los órganos (por ej: corazón). Acción difusa y lenta. Sistema Nervioso: que envía órdenes a través de las redes neuronales o vías nerviosas, dirigidas directamente a cada órgano.

Introducción Necesidad de obtener imágenes tanto estáticas (en placa o en un monitor) e imágenes dinámicas (secuencias de video que se visualizan en un monitor). Históricamente ambas detecciones eran analógicas (placas reveladas o secuencias de video tomadas con cámaras analógicas). Hoy en día se están popularizando las técnicas de detección digitales, teniendo ambos tipos de capturas en un monitor. El mundo digital ofrece múltiples ventajas como veremos mas adelante. El músculo esquelético se compone de numerosas células musculares. La excitación de estas células generan mediante mecanismos químicos la contracción o distencsión de los músculos. En organismos complejos existen dos sistemas para la integración de información y generación de respuestas: Sistema Endócrino: que envía las órdenes a través de hormonas que inyecta a la sangre, generando respuestas en los órganos (por ej: corazón). Acción difusa y lenta. Sistema Nervioso: que envía órdenes a través de las redes neuronales o vías nerviosas, dirigidas directamente a cada órgano.

Diagrama de bloques Generador Tubo de RX colimador Paciente Gen alto voltaje kV Corriente mA Rotación ánodo otros Tubo de RX colimador Fuente de luz Paciente Consola de operación Grilla anti scattering El músculo esquelético se compone de numerosas células musculares. La excitación de estas células generan mediante mecanismos químicos la contracción o distencsión de los músculos. En organismos complejos existen dos sistemas para la integración de información y generación de respuestas: Sistema Endócrino: que envía las órdenes a través de hormonas que inyecta a la sangre, generando respuestas en los órganos (por ej: corazón). Acción difusa y lenta. Sistema Nervioso: que envía órdenes a través de las redes neuronales o vías nerviosas, dirigidas directamente a cada órgano. Placa + pantalla intensif. Tubo int. de imagen Cadena de TV analog. DR flat pannel Monitor Cámara de video analo. o dig. Óptica Cadena de TV digital PC Reveladora CR

Captura de imágenes estáticas El método mas utilizado históricamente ha sido la placa. Se trata de proyectar los rayos x absorbidos por el paciente en una placa fotosensible (película, film). Luego dicha placa es revelada utilizando productos químicos similar al negativo de una cámara de fotos. El músculo esquelético se compone de numerosas células musculares. La excitación de estas células generan mediante mecanismos químicos la contracción o distencsión de los músculos. En organismos complejos existen dos sistemas para la integración de información y generación de respuestas: Sistema Endócrino: que envía las órdenes a través de hormonas que inyecta a la sangre, generando respuestas en los órganos (por ej: corazón). Acción difusa y lenta. Sistema Nervioso: que envía órdenes a través de las redes neuronales o vías nerviosas, dirigidas directamente a cada órgano.

Pantalla intensificadora Por si solo los film serían capaces de detectar los rayos x e imprimirlos en la placa. Serían necesarias grandes cantidades de rayos x para producir una imagen con resolución suficiente. Para mejorar esto se utilizan pantallas intensificadoras (screen) colocadas en las paredes de un “cassette” donde se coloca la placa. El músculo esquelético se compone de numerosas células musculares. La excitación de estas células generan mediante mecanismos químicos la contracción o distencsión de los músculos. En organismos complejos existen dos sistemas para la integración de información y generación de respuestas: Sistema Endócrino: que envía las órdenes a través de hormonas que inyecta a la sangre, generando respuestas en los órganos (por ej: corazón). Acción difusa y lenta. Sistema Nervioso: que envía órdenes a través de las redes neuronales o vías nerviosas, dirigidas directamente a cada órgano.

Pantalla intensificadora Fabricadas de un material centellante. Emiten fotones de luz al ser golpeadas por los rayos x. Esta luz aumenta muchísimo la eficiencia de la placa (los films son mas sensibles a estas long de onda) y la imagen es impresa con mayor claridad con mínima radiación. Existen 2 tipos de materiales utilizados para fabricar las pantallas: Tungstato de calcio (CaWO4). Tierras raras: Gd2O2S, LaOBr, YTaO4, etc. Como vemos es muy importante el apareo pantalla-placa. Sensibilidad de las pantallas Sensibilidad de las pantallas vs sens. de las placas El músculo esquelético se compone de numerosas células musculares. La excitación de estas células generan mediante mecanismos químicos la contracción o distencsión de los músculos. En organismos complejos existen dos sistemas para la integración de información y generación de respuestas: Sistema Endócrino: que envía las órdenes a través de hormonas que inyecta a la sangre, generando respuestas en los órganos (por ej: corazón). Acción difusa y lenta. Sistema Nervioso: que envía órdenes a través de las redes neuronales o vías nerviosas, dirigidas directamente a cada órgano.

Captura de imágenes dinámicas En ciertas aplicaciones es necesario obtener imágenes en movimiento. Dependiendo de la aplicación, son necesarios sistemas de TV con una tasa de entre 25 (fluoroscopia) a 100 (cine en angiografía) cuadros/segundo. El tiempo de exposición normal de una placa estática es del orden de 100ms o más. Con escenas dinámicas esto se reduciría a 1/25=40ms o menos por cada cuadro. Esta dosis es insuficiente por si sola para producir una imagen de resolución aceptable. Es necesario utilizar un sistema de “amplificación” de la señal de rayos x recibida. Se utiliza un tubo intensificador de imagen. El músculo esquelético se compone de numerosas células musculares. La excitación de estas células generan mediante mecanismos químicos la contracción o distencsión de los músculos. En organismos complejos existen dos sistemas para la integración de información y generación de respuestas: Sistema Endócrino: que envía las órdenes a través de hormonas que inyecta a la sangre, generando respuestas en los órganos (por ej: corazón). Acción difusa y lenta. Sistema Nervioso: que envía órdenes a través de las redes neuronales o vías nerviosas, dirigidas directamente a cada órgano.

Tubo intensificador de imágen El músculo esquelético se compone de numerosas células musculares. La excitación de estas células generan mediante mecanismos químicos la contracción o distencsión de los músculos. En organismos complejos existen dos sistemas para la integración de información y generación de respuestas: Sistema Endócrino: que envía las órdenes a través de hormonas que inyecta a la sangre, generando respuestas en los órganos (por ej: corazón). Acción difusa y lenta. Sistema Nervioso: que envía órdenes a través de las redes neuronales o vías nerviosas, dirigidas directamente a cada órgano.

Tubo intensificador de imágen Posee 4 componentes fundamentales: Un tubo de vacío dentro del cual los electrones son acelerados con alto voltaje. Una pantalla de entrada donde los rayos x se convierten en electrones. Una cadena de lentes electrostáticos que enfocan el haz de electrones. Una pantalla de salida que convierte los electrones en luz visible. El músculo esquelético se compone de numerosas células musculares. La excitación de estas células generan mediante mecanismos químicos la contracción o distencsión de los músculos. En organismos complejos existen dos sistemas para la integración de información y generación de respuestas: Sistema Endócrino: que envía las órdenes a través de hormonas que inyecta a la sangre, generando respuestas en los órganos (por ej: corazón). Acción difusa y lenta. Sistema Nervioso: que envía órdenes a través de las redes neuronales o vías nerviosas, dirigidas directamente a cada órgano.

Tubo intensificador de imagen Los rayos x incidentes atraviesan la cubierta protectora del intensificador (vidrio, aluminio, etc). Aprox. El 10% se pierden, el 90% restante pasa y alcanza la capa inicial (yoduro de cesio), donde son convertidos en luz. Los electrones llegan a la pantalla de fósforo que se encuentra en la salida, solo el 1% de los electrones incidentes serán convertidos en luz, la cual será luego capturada por cámaras de TV. El proceso de aceleración y minificación (reducción de tamaño), logran amplificaciones de la información del orden de 10000 veces. Estos fotones de luz alcanzan la segunda capa, el fotocátodo, consistente de antimonio y cesio. En esta capa los fotones incidentes desprenden electrones de la superficie del metal que serán acelerados hacia el ánodo. Muchos e por cada foton incidente. Estos electrones son desprendidos y acelerados mediante alta tensión (25 a 35kV) aplicada entre cátodo y ánodo. Su trayectoria hacia el ánodo es controlada mediante el uso de lentes electrostáticos a los cuales se les aplican diferencias de tensión, de esta forma se logra hacer foco sobre la pantalla de salida. El músculo esquelético se compone de numerosas células musculares. La excitación de estas células generan mediante mecanismos químicos la contracción o distencsión de los músculos. En organismos complejos existen dos sistemas para la integración de información y generación de respuestas: Sistema Endócrino: que envía las órdenes a través de hormonas que inyecta a la sangre, generando respuestas en los órganos (por ej: corazón). Acción difusa y lenta. Sistema Nervioso: que envía órdenes a través de las redes neuronales o vías nerviosas, dirigidas directamente a cada órgano.

Aplicaciones Resumen: Contamos con una fuente de RX (tubo). Paciente donde dichos rayos son atenuados. Sistemas de detección de dicha atenuación (film, pantalla intensificadora, tubo intensificador de imagen, cadena de TV, etc). Imagen representativa de dicha atenuación. Surgen así diferentes áreas de aplicación de dichas propiedades que veremos a continuación El músculo esquelético se compone de numerosas células musculares. La excitación de estas células generan mediante mecanismos químicos la contracción o distencsión de los músculos. En organismos complejos existen dos sistemas para la integración de información y generación de respuestas: Sistema Endócrino: que envía las órdenes a través de hormonas que inyecta a la sangre, generando respuestas en los órganos (por ej: corazón). Acción difusa y lenta. Sistema Nervioso: que envía órdenes a través de las redes neuronales o vías nerviosas, dirigidas directamente a cada órgano.

Radiología convencional Es tal vez la técnica más popular, utilizada en ortopedia y traumatología para ver huesos. Se utilizan placas junto con pantallas intensificadoras. Aplicaciones: Identificar fracturas, artrosis, etc. Radiología de tórax, etc. El músculo esquelético se compone de numerosas células musculares. La excitación de estas células generan mediante mecanismos químicos la contracción o distencsión de los músculos. En organismos complejos existen dos sistemas para la integración de información y generación de respuestas: Sistema Endócrino: que envía las órdenes a través de hormonas que inyecta a la sangre, generando respuestas en los órganos (por ej: corazón). Acción difusa y lenta. Sistema Nervioso: que envía órdenes a través de las redes neuronales o vías nerviosas, dirigidas directamente a cada órgano.

Fluoroscopía Fluoroscopía o radioscopía: similar al anterior pero permite estudios dinámicos, es decir, ver secuencias de video en tiempo real. Generalmente con el uso líquidos de contraste. Se utilizan tubos intensificadores de imagen y cadenas de TV convencionales. Aplicaciones: Seguimiento y visualización del tracto gastro-intestinal. Esófago, intestino grueso y delgado, etc. El músculo esquelético se compone de numerosas células musculares. La excitación de estas células generan mediante mecanismos químicos la contracción o distencsión de los músculos. En organismos complejos existen dos sistemas para la integración de información y generación de respuestas: Sistema Endócrino: que envía las órdenes a través de hormonas que inyecta a la sangre, generando respuestas en los órganos (por ej: corazón). Acción difusa y lenta. Sistema Nervioso: que envía órdenes a través de las redes neuronales o vías nerviosas, dirigidas directamente a cada órgano.

Angiografía Técnica dedicada a la visualización de vasos sanguíneos, venas y arterias. Mediante la inyección de contrastes se pueden ver con claridad. Se utilizan tubos intensificadores de imagen y cadenas de TV especiales. Aplicaciones: Estudios de hemodinámica, localización de estenosis o malformaciones de ciertos vasos. Vascularización de tumores. Estudios coronarios, etc. El músculo esquelético se compone de numerosas células musculares. La excitación de estas células generan mediante mecanismos químicos la contracción o distencsión de los músculos. En organismos complejos existen dos sistemas para la integración de información y generación de respuestas: Sistema Endócrino: que envía las órdenes a través de hormonas que inyecta a la sangre, generando respuestas en los órganos (por ej: corazón). Acción difusa y lenta. Sistema Nervioso: que envía órdenes a través de las redes neuronales o vías nerviosas, dirigidas directamente a cada órgano.

Mamografía Técnica utilizada para ver en detalle el tejido mamario. Poseen una altísima resolución, se pueden ver detalles muy pequeños. Se utilizan placas junto con pantallas intensificadoras. El músculo esquelético se compone de numerosas células musculares. La excitación de estas células generan mediante mecanismos químicos la contracción o distencsión de los músculos. En organismos complejos existen dos sistemas para la integración de información y generación de respuestas: Sistema Endócrino: que envía las órdenes a través de hormonas que inyecta a la sangre, generando respuestas en los órganos (por ej: corazón). Acción difusa y lenta. Sistema Nervioso: que envía órdenes a través de las redes neuronales o vías nerviosas, dirigidas directamente a cada órgano.

Arcos en C Similar a un equipo de angiografía pero de menor potencia y mas protatíl. Se utilizan tubos intensificadores de imagen junto con cadenas de TV convencionales. Aplicaciones: Intervenciones quirúrgicas. Estudios hemodinámicas, etc. El músculo esquelético se compone de numerosas células musculares. La excitación de estas células generan mediante mecanismos químicos la contracción o distencsión de los músculos. En organismos complejos existen dos sistemas para la integración de información y generación de respuestas: Sistema Endócrino: que envía las órdenes a través de hormonas que inyecta a la sangre, generando respuestas en los órganos (por ej: corazón). Acción difusa y lenta. Sistema Nervioso: que envía órdenes a través de las redes neuronales o vías nerviosas, dirigidas directamente a cada órgano.

Litotricia Localización de cálculos para litotricia: la litotricia es la técnica que se encarga de la destrucción de cálculos mediante la aplicación de ondas de ultrasonido. La visualización de dichos cálculos y centrado de los disparos se realizan con la ayuda de rayos x. Se utilizan tubos intensificadores de imagen junto con cadenas de TV convencionales. El músculo esquelético se compone de numerosas células musculares. La excitación de estas células generan mediante mecanismos químicos la contracción o distencsión de los músculos. En organismos complejos existen dos sistemas para la integración de información y generación de respuestas: Sistema Endócrino: que envía las órdenes a través de hormonas que inyecta a la sangre, generando respuestas en los órganos (por ej: corazón). Acción difusa y lenta. Sistema Nervioso: que envía órdenes a través de las redes neuronales o vías nerviosas, dirigidas directamente a cada órgano.

Tomografía computada Se obtienen imágenes anatómicas del cuerpo humano para el diagnóstico de múltiples patologías, cortes 2D o imágenes 3D. Se utilizan otro tipo de detectores no visto, detectores de gas, cerámicos, estado sólido, etc. Habrá en el curso una clase completa sobre este tema. El músculo esquelético se compone de numerosas células musculares. La excitación de estas células generan mediante mecanismos químicos la contracción o distencsión de los músculos. En organismos complejos existen dos sistemas para la integración de información y generación de respuestas: Sistema Endócrino: que envía las órdenes a través de hormonas que inyecta a la sangre, generando respuestas en los órganos (por ej: corazón). Acción difusa y lenta. Sistema Nervioso: que envía órdenes a través de las redes neuronales o vías nerviosas, dirigidas directamente a cada órgano.

Digitalización Por que digitalizar? Radiología digital vs Radiología analógica Beneficios obtenidos: Menor dosis de radiaciones para el paciente y el operador. Menor cantidad de material contaminante (Plomo, Químicos de revelador y fijador). Ahorros económicos: placas radiográficas y rollos fotográficos, ahorro en la compra de reveladores y fijadores, ahorro en la compra y mantenimiento de procesadoras de placas y equipos de revelado. Disminución del espacio físico para guardar las imágenes, uso de archivos digitales. Diagnóstico remoto y envío de resultados por intranet hospitalaria o internet, brindando rapidez, practicidad y posibilidad de interconsulta entre profesionales al instante. Alto contraste de las imágenes digitales, uso de monitores especiales software con herramientas de procesamiento que ayudan al médico, facilitando y mejorado el diagnóstico. El músculo esquelético se compone de numerosas células musculares. La excitación de estas células generan mediante mecanismos químicos la contracción o distencsión de los músculos. En organismos complejos existen dos sistemas para la integración de información y generación de respuestas: Sistema Endócrino: que envía las órdenes a través de hormonas que inyecta a la sangre, generando respuestas en los órganos (por ej: corazón). Acción difusa y lenta. Sistema Nervioso: que envía órdenes a través de las redes neuronales o vías nerviosas, dirigidas directamente a cada órgano.

Técnicas de digitalización Ciertos equipos (modalidades), como ser CT, MR, NM, US, DSA es mucho mas común que posean salida digital (aunque no siempre). Actualmente hay disponibles equipos de RX con detectores digitales. Otros como RX convencional, portátiles, mamografía, radioscopia, etc no es común que la tengan y hay que digitalizarlos. Tenemos 2 maneras de hacer esto: Forma directa. Forma indirecta.

Digitalización en forma directa DR (Digital Radiography): Se utilizan detectores digitales directamente del tipo “flat pannel” quienes convierten los Rx en luz (yoduro de cesio) y son captados por pequeños elementos del estilo TFT. DDR es una variante en la cual no hay conversión a luz, directamente pasan de Rx a señales eléctricas. CR (Computed Radiography): Esta en el límite entre ser un método directo o indirecto. Se sustituye la placa convencional por una placa con capacidad de memoria:

DR y DDR Son llamados detectores flat pannel. Una fina capa de yoduro de cesio que emite luz al incidirle rayos x. Matriz de detectores: cada pixel consiste de un transistor, una celda TFT (thin film transistor) y un fotodiodo. El fotodiodo convierte la luz en un voltaje que es almacenado en el condensador y luego leído por los IC con ayuda de cada transistor de la matriz TFT. Existe otro tipo de detectores directos, donde se utiliza fotodetectores de celenio y no es necesario el pasaje a luz, los rayos x son directamente convertidos en corrientes eléctricas.

CR Placa de fluorobromo de bario, los Rx hacen que electrones pasen de un estado de baja energía a uno de mas alta. Al volver a su estado de reposo emitirían luz, pero esto es impedido mediante “trampas” existentes en la placa. Dicha placa se coloca en el CR quien realiza un barrido punto a punto con un láser de He-Ne de 633nm, provocando la liberación de las “trampas” y volviendo a su estado de reposo emitiendo luz azul de aprox 400nm. Dicha luz es captada y convertida en una señal eléctrica. Luego la placa se borra sometiendola a luz intensa quedando lista para un nuevo uso, llegan a durar alrededor de 3000 reusos.