El término radiación se refiere a la emisión continua de energía desde la superficie de cualquier cuerpo, esta energía se denomina radiante y es transportada.

Slides:



Advertisements
Presentaciones similares
UNIDAD 5: LUZ Y COLOR.
Advertisements

Radiación de cuerpo negro
REDES I CARRERA DE INGENIERÍA DE SISTEMAS Ing. Moisés Toapanta, MSc. Guayaquil, mayo del 2014.
INSTITUTO TÉCNICO RICALDONE DEPARTAMENTO DE CIENCIAS NATURALES
NATURALEZA ELECTROMAGNETICA DE LA MATERIA
FÍSICA CUÁNTICA.
Mecánica (y todas sus derivaciones) –Continuidad. Invención y aplicación del cálculo diferencial e integral y del análisis matemático –Concepto.
¿Mediante qué vías se transmite el calor? La mano se calienta por conducción. El gato se calienta por radiación. El agua se calienta por convección.
Modelo atómico de Bohr h rn = n 2mv
Luz e iluminación © U V M.
Radiación del Cuerpo Negro
Radiación del cuerpo negro: Modelos y arreglos experimentales
Fundamentos de Física Moderna Radiación del Cuerpo Negro -modelos clásicos- Nombre: Fabian Andres Robayo Quintero Fecha 13/06/2015.
Fundamentos de Física Moderna Radiación del Cuerpo Negro
Fundamentos de Física Moderna Radiación del Cuerpo Negro -modelos clásicos- ERIK ESTEBAN CARVAJAL GONZÁLEZ G2E08Erik Junio de 2015.
Fundamentos de Física Moderna Radiación del Cuerpo Negro -modelos clásicos- Andrés Camilo Vargas Páramo G2E34 15 de junio de 2015.
Radiación del cuerpo negro Sergio Toledo Cortes G2E31.
Radiación del cuerpo negro  característica de l a honda electromagnética Velocidad propagada= λ ﻻ(frecuencia*longitud) Conjunto de valores para longitud.
Oswaldo Ivan Homez Lopez G1E13Oswaldo. Definición Consideremos una cavidad cuyas paredes están a una cierta temperatura. Los átomos que componen las paredes.
Andres Santiago Espinosa Moreno G2E11Andres.  Definición Es referido a un objeto o sistema que absorbe toda la radiación incidente sobre él, y re-irradia.
RADIACIÓN DEL CUERPO NEGRO
Felipe André Buitrago Porras G02E07Felipe
RADIACIÓN DE CUERPO NEGRO LUIS ALFREDO GUTIÉRREZ PAYANENE -G1E12LUIS-
RADIACIÓN DEL CUERPO NEGRO -MODELOS CLÁSICOS-
Fundamentos de Física Moderna Radiación del Cuerpo Negro (modelo cuántico) ANDRÉS HERRERA -G2E16ANDRES - 15/06/15.
Andrés Camilo Suarez Leaño 16/06/2015
RADIACIÓN DEL CUERPO NEGRO MODELO CUÁNTICO 1900 Jhoan Manuel Martínez Ruiz Universidad Nacional de Colombia.
Fundamentos de Física Moderna Radiación del Cuerpo Negro
Óptica geométrica de los cuerpos
F UNDAMENTOS DE F ÍSICA M ODERNA R ADIACIÓN DEL C UERPO N EGRO MODELOS CLÁSICOS Andrés Camilo Suárez Leaño 15/06/2015.
Daniel Mateo Aguirre B. -G2E03- 26/05/2015. Lista de observables: Temperatura Volumen Forma Color Intensidad luminosa.
Fundamentos de Física Moderna Radiación del Cuerpo Negro (modelo cuántico) Sergio Toledo Cortes -G2E31- Junio/14/2015.
John Sebastian Panche Estupiñán - G2E24John - Junio/2015
Fundamentos de Física Moderna Radiación del Cuerpo Negro -modelos clásicos- Luis Felipe Cepeda Vargas -G1E05Luis- 05/06/2015.
Juan Felipe Quintero Duarte G2E26
RADIACIÓN DEL CUERPO NEGRO
Universidad Nacional De Colombia. Facultad De Ingeniería. Norida Joya R. (273438) Nataly Cubides Z. (273431)
Radiación del Cuerpo Negro
Radiación del Cuerpo Negro Obs Max Karl Ernst Ludwig Planck Berlin University Berlin, Germany b d Radiación del cuerpo negro. Cuando.
FÍSICA CUÁNTICA.
 G2E22Daniel Daniel Alejandro Morales Manjarrez Fundamentos de física moderna.
RADIACIÓN DE CUERPO NEGRO MODELOS CUÁNTICOS 1900 ANDRÉS FABIÁN DUQUE RINCÓN G1E08Andrés.
RADIACIÓN DE CUERPO NEGRO – MODELOS CLÁSICOS
ESPECTRO ELECTROMAGNÉTICO
Los aislantes térmicos son aquellas sustancias que transmiten lentamente la energía térmica. SustanciaConductividad térmica Plata0,97 Cobre0,92 Aluminio0,49.
Espectros de emisión de los elementos. Luz emitida por una descarga eléctrica a través de a) hidrogeno b) helio. Luz emitida cuando se queman a la llama.
Introducción: A medida de que la temperatura de un cuerpo aumenta se vuelve más difícil medirla, ya sea por medios convencionales como los termómetros.
Adriana María Romero Romero G2N24Adriana Código:
Universidad nacional de Colombia Fundamentos de Física Moderna T1G02N25Carlos Carlos Alfredo Osorio Triana
El movimiento ondulatorio El movimiento ondulatorio es el proceso por el que se propaga energía de un lugar a otro sin transferencia de materia, mediante.
RADIACION DE CUERPO NEGRO MIGUEL ANGEL FAJARDO ARANDA FISICA MODERNA Departamento de Física Universidad Nacional de Colombia.
RADIACIÓN DEL CUERPO NEGRO Carlos Fabian Beltran Cifuentes Fundamentos de Física Moderna Universidad Nacional de Colombia Facultad de ingeniería.
Radiación Del Cuerpo Negro
Radiación del cuerpo negro YILMAR FERNANDO PEÑALOSA HERRERA.
Jonathan Leonardo Begambre Rodriguez Universidad Nacional de Colombia Facultad de Ingeniería Departamento de Ingeniería Mecánica y Mecatrónica.
Profesor Jaime Villalobos Velasco Departamento de Física Universidad Nacional de Colombia Kevin Daniel Barajas ValeroG2N03.
FUNDAMENTOS FÍSICA MODERNA QUIZ 01 JHON JAIRO CORTÉS JIMÉNEZ CÓDIGO G2N08Jhon.
PPTCES003CB32-A09V1 Ondas y El sonido. Vibración Cuando se le aplica una fuerza a un cuerpo y este realiza un movimiento de vaivén en torno a un punto.
Profesor Jaime Villalobos Velasco Departamento de Física Universidad Nacional de Colombia Mar ______________________________________________.
Sergio Mendivelso Física moderna 2016-I. RADIACIÓN DE CUERPO NEGRO Cuerpo negro: es aquel que absorbe toda la radiación que le llega a todas las longitudes.
Problema Ley S-B: masa consumida por el sol en un segundo a causa de radiación em 4000 millones toneladas.
Radiación del cuerpo negro DUVAN DARIO RINCON VILAMIL.
ESPECTROSCOPIA ANDRÉS FELIPE ESCOBAR PARRA. Cuando la luz solar incide sobre las gotas de lluvia se genera en algunos casos el conocido arco iris. Un.
Sergio Mendivelso Física moderna 2016-I. 1: QUÉ ENTIENDE POR EL TÉRMINO RADIACIÓN DEL CUERPO NEGRO, RCN? Un Cuerpo negro es aquel que absorbe toda la.
La intensidad de la radiación emitida por un cuerpo negro, con una temperatura T, en la frecuencia v, viene dada por la ley de Planck: Donde es la cantidad.
Andrés Felipe Moreno Ruíz. Espectroscopia Técnica que utiliza la acción recíproca de diversos componentes de la frecuencia del espectro electromagnético.
RADIACIÓN DEL CUERPO NEGRO Armando Riascos. Qué es la RCN  La radiación se presenta cuando la materia en estados solidos o líquidos emite radiación con.
Qué es la RCN, Principales modelos de la RCN, Dónde radica el éxito del modelo de Wien? Por qué se le llama Catástrofe UV al modelo de R&J? Leyes de Stefan-Boltzmann,
Radiación del cuerpo negro Fundamentos de Física Moderna UN Por: Luis Miguel Avellaneda Codigo:
Química U.1 Estructura atómica. Sistema periódico
Transcripción de la presentación:

El término radiación se refiere a la emisión continua de energía desde la superficie de cualquier cuerpo, esta energía se denomina radiante y es transportada por las ondas electromagnéticas que viajan en el vacío a la velocidad de 3·10 8 m/s. Las ondas de radio, las radiaciones infrarrojas, la luz visible, la luz ultravioleta, los rayos X y los rayos gamma, constituyen las distintas regiones del espectro electromagnético.

Sobre la superficie de un cuerpo incide constantemente energía radiante, tanto desde el interior como desde el exterior, la que incide desde el exterior procede de los objetos que rodean al cuerpo. Cuando la energía radiante incide sobre la superficie una parte se refleja y la otra parte se transmite.

Consideremos la energía radiante que incide desde el exterior sobre la superficie del cuerpo. Si la superficie es lisa y pulimentada, como la de un espejo, la mayor parte de la energía incidente se refleja, el resto atraviesa la superficie del cuerpo y es absorbido por sus átomos o moléculas.Si r es la proporción de energía radiante que se refleja, y a la proporción que se absorbe, se debe de cumplir que r+a=1.

La misma proporción r de la energía radiante que incide desde el interior se refleja hacia dentro, y se transmite la proporción a=1-r que se propaga hacia afuera y se denomina por tanto, energía radiante emitida por la superficie.En la figura, se muestra el comportamiento de la superficie de un cuerpo que refleja una pequeña parte de la energía incidente. Las anchuras de las distintas bandas corresponden a cantidades relativas de energía radiante incidente, reflejada y transmitida a través de la superficie.

Comparando ambas figuras, vemos que un buen absorbedor de radiación es un buen emisor, y un mal absorbedor es un mal emisor. También podemos decir, que un buen reflector es un mal emisor, y un mal reflector es un buen emisor. Una aplicación práctica está en los termos utilizados para mantener la temperatura de los líquidos como el café. Un termo tiene dobles paredes de vidrio, habiéndose vaciado de aire el espacio entre dichas paredes para evitar las pérdidas por conducción y convección. Para reducir las pérdidas por radiación, se cubren las paredes con una lámina de plata que es altamente reflectante y por tanto, mal emisor y mal absorbedor de radiación.

La superficie de un cuerpo negro es un caso límite, en el que toda la energía incidente desde el exterior es absorbida, y toda la energía incidente desde el interior es emitida. No existe en la naturaleza un cuerpo negro, incluso el negro de humo refleja el 1% de la energía incidente.

Sin embargo, un cuerpo negro se puede sustituir con gran aproximación por una cavidad con una pequeña abertura. La energía radiante incidente a través de la abertura, es absorbida por las paredes en múltiples reflexiones y solamente una mínima proporción escapa (se refleja) a través de la abertura. Podemos por tanto decir, que toda la energía incidente es absorbida.

Consideremos una cavidad cuyas paredes están a una cierta temperatura. Los átomos que componen las paredes están emitiendo radiación electromagnética y al mismo tiempo absorben la radiación emitida por otros átomos de las paredes. Cuando la radiación encerrada dentro de la cavidad alcanza el equilibrio con los átomos de las paredes, la cantidad de energía que emiten los átomos en la unidad de tiempo es igual a la que absorben. En consecuencia, la densidad de energía del campo electromagnético existente en la cavidad es constante.

A cada frecuencia corresponde una densidad de energía que depende solamente de la temperatura de las paredes y es independiente del material del que están hechas. Si se abre un pequeño agujero en el recipiente, parte de la radiación se escapa y se puede analizar. El agujero se ve muy brillante cuando el cuerpo está a alta temperatura, y se ve completamente negro a bajas temperaturas.

Históricamente, el nacimiento de la Mecánica Cuántica, se sitúa en el momento en el que Max Panck explica el mecanismo que hace que los átomos radiantes produzcan la distribución de energía observada. Max Planck sugirió en 1900 que 1.La radiación dentro de la cavidad está en equilibrio con los átomos de las paredes que se comportan como osciladores armónicos de frecuencia dada f. 2.Cada oscilador puede absorber o emitir energía de la radiación en una cantidad proporcional a f. Cuando un oscilador absorbe o emite radiación electromagnética, su energía aumenta o disminuye en una cantidad hf. La segunda hipótesis de Planck, establece que la energía de los osciladores está cuantizada. La energía de un oscilador de frecuencia f sólo puede tener ciertos valores que son 0, hf, 2hf,3hf....nhf. La distribución espectral de radiación es continua y tiene un máximo dependiente de la temperatura. La distribución espectral se puede expresar en términos de la longitud de onda o de la frecuencia de la radiación. dE f /df es la densidad de energía por unidad de frecuencia para la frecuencia f de la radiación contenida en una cavidad a la temperatura absoluta T. Su unidad es (J·m -3 )·s.

donde k es la constante de Boltzmann cuyo valor es k=1.3805· J/K. dE /d es la densidad de energía por unidad de longitud de onda para la longitud de onda de la radiación contenida en una cavidad a la temperatura absoluta T. Su unidad es (J·m -3 )·m -1.

La posición del máximo en el espectro de la radiación del cuerpo negro depende de la temperatura del cuerpo negro y está dado por la ley de desplazamiento de Wien. Calculando la derivada primera de la función de la distribución de Planck expresada en términos de la longitud de onda o de la frecuencia Obtenemos la ecuación trascendente

Este resultado constituye la ley de desplazamiento de Wien, que establece que el máximo de la densidad de energía dE /d por unidad de longitud de onda a distintas temperaturas T 1, T 2, T 3,.., se produce a las longitudes de onda 1, 2, 3...tales que:

De modo similar en el dominio de las frecuencias Obtenemos la ecuación trascendente

A medida que la temperatura T se incrementa el máximo se desplaza hacia longitudes de onda menores (mayores frecuencias). Como podemos comprobar el producto

no nos da la velocidad de la luz c como se podría esperar a primera vista, ya que estamos tratando con el máximo de una distribución que nos da la intensidad por unidad de longitud de onda o por unidad de frecuencia. La luminosidad de un cuerpo caliente no se puede explicar, como se indica en algunos textos, a partir de la ley del desplazamiento de Wien, sino a partir de la intensidad de la radiación emitida en la región visible del espectro, tal como veremos más abajo. Así, a temperaturas tan elevadas como 6000 K el máximo medido en el eje de frecuencias de la distribución espectral se sitúa en la región del infrarrojo cercano. Sin embargo, a esta temperatura una proporción importante de la intensidad emitida se sitúa en la región visible del espectro.