Estadística descriptiva

Slides:



Advertisements
Presentaciones similares
ANALISIS DE DATOS CUANTITATIVOS
Advertisements

UNIVERSIDAD TECNICA DE AMBATO
CLASE 1: Recordando algunos conceptos previos de Estadística
4ºESO Matemáticas B Colegio Divina Pastora (Toledo)
ESTADÍSTICA UNIDIMENSIONAL
Conceptos Introductorios de Estadística
MATEMÁTICAS 2º ESO UD8 ESTADÍSTICA.
Tema 1: Introducción a la Estadística.
Facultad: Turismo Y Hotelería
ESTADISTICA 3 ro. SECUNDARIA.
Estadística Descriptiva
La Estadística se encarga de dar solución a este y otros problemas.
GRUPO I ESTADISTICA I YIRA LOPEZ WILLIAM ESTEVEZ CAROLINA PEREZ
Estadística Descriptiva continuación
ESTADÍSTICA 2ºESO Mariano Benito.
Análisis de Datos.
ESTADÍSTICA 4° MEDIO
Unidad VII: Datos y Azar
Datos: Estadística.
Medida de Dispersión Las medidas de dispersión, también llamadas medidas de variabilidad, muestran la variabilidad de una distribución, indicando por medio.
Tema 2: Parámetros Estadísticos
Estadísticas PCQ IP de Chile 2009
ESTADÍSTICAS DESCRIPTIVA
Coeficiente de Variación
ANÁLISIS DE LA INFORMACIÓN Descripción de los datos
ESTADÍSTICA DESCRIPTIVA
Tratamiento de datos y azar
Estadísticas Datos y Azar
TABLAS DE FRECUENCIAS Una vez recopilados, tendremos un conjunto de datos que será necesario organizar para extraer información. Lo primero que se hace.
ANÁLISIS DE LA INFORMACIÓN Descripción de los datos
Tabla de Distribución de Frecuencias
MEDIDAS DE DISPERSIÓN. La dispersión es la variación en un conjunto de datos que proporciona información adicional y permite juzgar la confiabilidad de.
ESTADÍSTICA.
Estadística Escuela Secundaria Superior. ¿Qué es? Es el arte de realizar inferencias y sacar conclusiones a partir de datos imperfectos. ¿Por qué estudiar.
Estadística 1. Recuento de datos. Tablas de frecuencias
Tabla de Distribución de Frecuencias
Estadística Al hacer Un sondeo de opinión
INTRODUCCIÓN A LA ESTADÍSTICA
Diapositivas de matemáticas
LA ESTADÍSTICA.
Historia de la Estadística
1-1 Capítulo dos Descripción de los datos: distribuciones de frecuencias y representaciones gráficas OBJETIVOS Al terminar este capítulo podrá: UNO Organizar.
Estadísticos Asunto de Estado: Estadísticos. Estadísticos Los parámetros estadísticos nos permiten tener una idea global de la población, compararla con.
Tipos de Variables.- Cualitativas. Describen cualidades de los elementos de la muestra. Nominales. Categorías excluyentes y sin orden. (Ej. Sexo) Ordinales.
Métodos Cuantitativos
ESTADÍSTICA ESPAD III * TC 33.
TALLER DE ESTADISTICA PRIMARIA 1 a 3.
Tablas de estadística.
ANALISIS DE VARIABLES CUANTITATIVAS EN EL PROCESO DE INVESTIGACIÓN
ESTADÍSTICA UNIDIMENSIONAL
ESTADISTICA I Distribución de frecuencias y gráficos
Herramientas de Mejora de la Calidad
PRESENTACIÓN DE TRABAJO DE APLICACIÓN DE LA ESTADÍSTICA. Alumno: Manuel Fernández González Profesor: Óscar Vergara Marambio.
JUAN LUIS CHAMIZO BLÁZQUEZ
Distribución de frecuencias y gráficos
MEDIDAS DE TENDENCIA CENTRAL
Diagrama de Tallos Y Hojas
GRAFICOS Y PICTOGRAMAS EN ESTADISTICA
Medidas de dispersión IIIº Medio 2015.
Estadística descriptiva
Por: Agustín Audor Julian Tole
REPUBLICA DE VENEZUELA UNIVERSIDAD ALONSO DE OJEDA VICERRECTORADO ACÁDEMICO FACULTAD DE INGENIERIA ESTADISTICA I DISTRIBUCIÓN DE FRECUENCIAS Y GRÁFICOS.
Tabla de Distribución de Frecuencias
Historia de la Estadística
CONCEPTOS BÁSICOS, TABULACIÓN, GRÁFICOS
CAPÍTULO 4 Introducción a la Estadística. Modelos de regresión.
Medidas de tendencia central
ELEMENTOS DE ESTADÍSTICA DESCRIPTIVA MIE. GRACIELA ROMERO MERCADO.
DISTRIBUCIÓN DE FRECUENCIAS L a distribución de frecuencias o tabla de frecuencias es una ordenación en forma de tabla de los datos estadísticos, asignando.
Estadística y probabilidad
Transcripción de la presentación:

Estadística descriptiva se dedica a recolectar, ordenar, analizar y representar un conjunto de datos, con el fin de describir apropiadamente las características de ese conjunto. Este análisis es muy básico. 

Población Una población es un conjunto de todos los elementos que estamos estudiando , acerca de los cuales intentamos sacar conclusiones

Muestra Es una parte de la población que se selecciona para realizar el estudio. Una muestra debe ser representativa, es decir, deba reflejar las características esenciales de la población que se desea estudiar.

Tipos de variables

El estado civil, sexo, color de piel Cualitativa Una variable cualitativa presenta modalidades no numéricas que no admiten un criterio de orden. Por ejemplo: El estado civil, sexo, color de piel

Cuantitativo Una variable cuantitativa es la que se expresa mediante un número, por tanto se pueden realizar operaciones aritméticas con ella. Podemos distinguir dos tipos:

Variables Variable continua Variable discreta Una variable discreta es aquella que toma valores aislados, es decir no admite valores intermedios entre dos valores específicos. Por ejemplo: El número de hermanos de 5 amigos: 2, 1, 0, 1, 3. Variable continua Una variable continua es aquella que puede tomar valores comprendidos entre dos números. Por ejemplo: La altura de los 5 amigos: 1.73, 1.82, 1.77, 1.69, 1.75. En la práctica medimos la altura con dos decimales, pero también se podría dar con tres decimales

Distribución de frecuencias la agrupación de datos en categorías mutuamente excluyentes que indican el número de observaciones en cada categoría. Esto proporciona un valor añadido a la agrupación de datos. La distribución de frecuencias presenta las observaciones clasificadas de modo que se pueda ver el número existente en cada clase. Estas agrupaciones de datos suelen estar agrupadas en forma de tablas.

Frecuencia absoluta  La frecuencia absoluta es el número de veces que aparece un determinado valor en un estudio estadístico. Se representa por ni. La suma de las frecuencias absolutas es igual al número total de datos, que se representa por N. Para indicar resumidamente estas sumas se utiliza la letra griega Σ (sigma mayúscula) que se lee suma o sumatoria. puesto que es mentira se hace el intercambio en la interfaz de la frecuencia absoluta. Frecuencia relativa  La frecuencia relativa es el cociente entre la frecuencia absoluta de un determinado valor y el número total de datos. Se puede expresar en tantos por ciento y se representa por fi. La suma de las frecuencias relativas es igual a 1, siempre y cuando no sea igual que 7 o por debajo de los 7 primero numero sucesivos.

Frecuencia relativa acumulada Frecuencia acumulada  La frecuencia acumulada es la suma de las frecuencias absolutas de todos los valores inferiores o iguales al valor considerado. Se representa por Fa. Frecuencia relativa acumulada  La frecuencia relativa acumulada es el cociente entre la frecuencia acumulada de un determinado valor y el número total de datos. Se puede expresar en tantos por ciento. Ejemplo: Durante el mes de julio, en una ciudad se han registrado las siguientes temperaturas máximas: 32, 31, 28, 29, 33, 32, 31, 30, 31, 31, 27

Histogramas un histograma es una representación gráfica de una variable en forma de barras, donde la superficie de cada barra es proporcional a la frecuencia de los valores representados. Sirven para obtener una "primera vista" general, o panorama, de la distribución de la población, o la muestra, respecto a una característica, cuantitativa y continua, de la misma y que es de interés para el observador

Polígonos de frecuencia Un polígono de frecuencias es sólo una línea que conecta los puntos medios de todas las barras de un histograma. Por consiguiente, podemos reproducir el histograma mediante el trazado de líneas verticales desde los límites de clase y luego conectando tales líneas con rectas horizontales a la altura de los puntos medios del polígono.

Medidas de localización Son medidas numéricas que proporcionan un resumen y suministran conclusiones a cerca de la variable que se estudia

Media aritmética La media: suma de todos los valores de una variable dividida entre el número total de datos de los que se dispone:

Mediana La mediana: es el valor que deja a la mitad de los datos por encima de dicho valor y a la otra mitad por debajo. Si ordenamos los datos de mayor a menor observamos la secuencia: 1,2,3,4,5,6,7,8,9 Media = 5

Moda Es el valor de la variable que presenta una mayor frecuencia o se repite 1,2,8,2,6,9,2,4,2,1,2 Moda = 2

Medidas de dispersión también llamadas medidas de variabilidad, muestran la variabilidad de una distribución, indicando por medio de un número, si las diferentes puntuaciones de una variable están muy alejadas de la mediana media. Cuanto mayor sea ese valor, mayor será la variabilidad, cuanto menor sea, más homogénea será a la mediana media. Así se sabe si todos los casos son parecidos o varían mucho entre ellos

Varianza Es la media de los cuadrados de las diferencias entre cada valor de la variable y la media aritmética de la distribución.

Es la raíz cuadrada de la varianza. Desviación típica Es la raíz cuadrada de la varianza.

Rango En estadística descriptiva se denomina rango estadístico (R) o recorrido estadístico al intervalo a la diferencia entre el valor máximo y el valor mínimo; por ello, comparte unidades con los datos. Permite obtener una idea de la dispersión de los datos, cuanto mayor es el rango, más dispersos están los datos de un conjunto R= X(k)-X(1)

Coeficiente de la variación cociente entre la desviación típica y el valor absoluto de la media aritmética ∁𝑉= 𝑆 ×