El campo gravitatorio. Movimientos bajo fuerzas gravitatorias

Slides:



Advertisements
Presentaciones similares
Capítulo 14 – Movimiento armónico simple
Advertisements

IPEP de Cádiz - Dpto. de Física y Química
MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE
TEMA 2. CAMPO GRAVITATORIO.
Tema 0. fundamentos de mecánica
Energía Potencial Eléctrica Potencial Y Diferencia De Potencial
ELECTROSTATICA.
CAMPO GRAVITATORIO CAMPO ELÉCTRICO
Fuerzas a distancia Campos de Fuerza.
TEMA 7 CINEMÁTICA Primera Parte.
P1 P2 Vector posición como , y su expresión en el espacio es:
COSMOLOGÍA.GRAVITACIÓN
Física 5º D I.D.B. CAMPO ELECTROSTÁTICO.
INTRODUCCIÓN A LA CINEMÁTICA
FUERZAS Y MOVIMIENTO 2º ESO.
Teoría de la Gravitación Universal
MECÁNICA DEL SÓLIDO RÍGIDO.
Dinámica de la Partícula
1.8 Energía potencial eléctrica y definición de potencial eléctrico.
1.3 Concepto de campo eléctrico. Esquemas de campo eléctrico.
1 Dinámica 1 Los principios de Newton 1ª Ley (ley de la inercia)
Recursos matemáticos para física
Departamento: INGENIERÍA MECÁNICA, ENERGÉTICA Y DE MATERIALES
Campo electrostático y potencial
Cantidad de líneas de campo que atraviesa la superficie ds.
CAMPO GRAVITATORIO.
Capítulo II El campo eléctrico.
6 Estudio del movimiento 1 La necesidad de tomar referencias
CAMPO GRAVITATORIO I.E.S. Francisco de los Cobos. Úbeda (Jaén)
Movimiento Ondulatorio
ESTÁTICA II FUERZAS DISTRIBUIDAS: CENTROIDES Y CENTRO DE GRAVEDAD.
MOVIMIENTO ARMÓNICO SIMPLE
CINEMÁTICA.
CAMPO ELECTRICO (
INTERACCIÓN ELECTRICA. LEY DE COULOMB
Fuerzas y Leyes de Newton
TEORÍA DE LA GRAVITACIÓN UNIVERSAL
Interacción Gravitatoria
Departamento: INGENIERÍA MECÁNICA, ENERGÉTICA Y DE MATERIALES
Física Lic.Sujey Herrera Ramos
Leyes de Kepler Luis Enrique Gallardo.
TEMA 5. DINÁMICA. LAS FUERZAS Y EL MOVIMIENTO
Deben tener igual dirección, igual módulo y sentido opuesto.
Temas de hoy • Potencial Eléctrico definido
INTERACCION ELECTROSTATICA EN EL VACIO
DINAMICA GENERAL DE LA PARTICULA
Intensidad del campo eléctrico
GRAVITACIÓN Y CAMPO GRAVITATORIO
Introducción & estática de partículas
C E Circulación y energía por unidad de carga. Circulación en un campo vectorial: Es otra forma de obtener información sobre las características del campo.
REPASO DE FÍSICA Física 2º Bto 18/04/ /04/2017
CINEMATICA Definición MRU Móv. Circular MRUV Móv. Armónico Simple
Unión de la cinemática y la dinámica
DINÁMICA DE LA PARTÍCULA
El movimiento vibratorio
2 Gravitación 15 El campo gravitatorio
de planetas y satélites
Tema 2. Campo electrostático
Tema 1. Ley de Gravitación Universal
La esfera celeste Ley de la gravitación universal Energía potencial gravitatoria Satélites Órbitas elípticas Unidades y magnitudes SI.
Conceptos básicos Cinemática en 1-D Cinemática en 2-D
Movimientos y fuerzas 6 Índice del libro 1.El movimientoEl movimiento 2.La velocidadLa velocidad 3.Movimiento rectilíneo uniforme (MRU)Movimiento rectilíneo.
Conceptos básicos Aplicaciones de la dinámica Impulso mecánico y cantidad de movimiento.
Electrostática (Continuación)
02. GRAVITACIÓN UNIVERSAL Dpto. de Física y Química
OLIMPIADA DE FÍSICA Granada 2016 Departamento de Física y Química.
CINEMATICA.
Dpto. Física Aplicada UCLM
ENERGIA POTENCIAL GRAVITACIONAL Consideremos un sistema de dos partículas de masas m 1 y m 0. Podemos calcular la energía potencial de este sistema especificando.
07. MOVIMIENTOS OSCILATORIOS Dpto. de Física y Química
Transcripción de la presentación:

El campo gravitatorio. Movimientos bajo fuerzas gravitatorias Deducción de la ley de Newton a partir de las leyes de Kepler  Se supone que las órbitas descritas por los planetas en torno al Sol son circulares, sin que ello suponga cometer un gran error puesto que en realidad son prácticamente así  Velocidad angular del planeta:  Sol Tierra  Su aceleración centrípeta: a = 2 R R  Por la 3ª ley de Kepler (T2 = kR3):  La fuerza F ejercida sobre un planeta de masa m es inversamente proporcional al cuadrado de la distancia  Dicha constante incluye la masa del Sol es decir: cte = GM  Ley de la gravitación universal La ley de gravitación universal indica que la fuerza de interacción entre dos partículas materiales es directamente proporcional al producto de las masas e inversamente proporcional al cuadrado de su distancia

El campo gravitatorio. Movimientos bajo fuerzas gravitatorias  La ecuación de Newton proporciona la expresión de la fuerza entre dos masas:  x y z  Para explicar la acción que una masa ejerce sobre otra situada a cierta distancia, se introduce el concepto de campo de fuerzas m m’  La masa m hace que las propiedades del espacio que la rodea cambien, independientemente que en su proximidad se sitúe otra masa m’  La intensidad del campo gravitatorio en un punto es la fuerza por unidad de masa, calculada en dicho punto cuyo módulo es: y se expresa en N/kg en el S.I.  La fuerza gravitatoria sobre otra masa inmersa en el campo es:

El campo gravitatorio. Movimientos bajo fuerzas gravitatorias Representación del campo  Los campos de fuerzas se representan mediante líneas de campo  En el campo gravitatorio, las líneas de campo no parten de ningún punto definido, carecen de fuentes, y acaban en los cuerpos con masa o sumideros m M Características de las líneas de campo  Módulo: se indica mediante la densidad de líneas de campo  Dirección del campo en un punto es la tangente a la línea en dicho punto  El sentido viene indicado por la flecha, y es el que seguiría la unidad de masa colocada en dicha línea por efecto de las fuerzas del campo

El campo gravitatorio. Movimientos bajo fuerzas gravitatorias Principio de superposición  La intensidad del campo en un punto P, creado por un conjunto de masas puntuales, se obtiene calculando la creada por cada una de ellas y sumando los resultados parciales siendo m1 m2 m3 P  También se puede aplicar al cálculo de la fuerza ejercida sobre cierta masa por la acción de un conjunto discreto de ellas Si un cuerpo está sometido a la acción de varias fuerzas gravitatorias, el efecto total resultante es la suma de los efectos individuales de cada fuerza

El campo gravitatorio. Movimientos bajo fuerzas gravitatorias Campos de fuerzas conservativos (I)  Sea una partícula de masa m situada en el seno de un campo de fuerzas A B  Por cada desplazamiento que realice la partícula, la fuerza del campo realiza un trabajo:  Para desplazamientos infinitesimales:  El camino total desde un punto A a otro B es la suma de todos los  Si en cada se realiza un trabajo dW, el trabajo total será la suma de todos los realizados en cada intervalo infinitesimal: Campos de fuerzas conservativos son aquellos en los que el trabajo depende solo de los puntos inicial y final, y no del camino seguido

El campo gravitatorio. Movimientos bajo fuerzas gravitatorias Campos de fuerzas conservativos (II)  En un campo de fuerzas conservativo, el resultado de la integral del trabajo realizado para ir desde A hasta B puede expresarse como una nueva función, Ep que depende solo de los puntos inicial y final  A B C1 C2  Si el campo de fuerzas es conservativo,  Si se invierte el segundo camino, Cuando un cuerpo se desplaza por una trayectoria cerrada en un campo de fuerzas conservativo, el trabajo total realizado por las fuerzas del campo es nulo

El campo gravitatorio. Movimientos bajo fuerzas gravitatorias El campo gravitatorio como ejemplo de campo conservativo  Las fuerzas gravitatorias creadas por una partícula m que actúan sobre la partícula m’, son radiales y con sentido hacia m  Cualquier camino de A hasta B se descompone en suma de arcos circulares centrados en m y de desplazamientos radiales m A B   El trabajo por el arco circular es nulo, por ser la fuerza perpendicular al desplazamiento  El trabajo por el camino radial, es igual para todos los caminos que se elijan entre A y B m’  Se define circulación de una magnitud vectorial a lo largo de una línea L a la integral definida entre los límites de dicha línea  Si el campo es conservativo, la circulación a lo largo de una línea cerrada es nula  Para el campo de fuerzas gravitatorio:

El campo gravitatorio. Movimientos bajo fuerzas gravitatorias Comprobación de que las fuerzas elásticas son conservativas Comprueba si en la ley de Hooke la fuerza recuperadora de un muelle es conservativa x0 x1  Si se quiere alargar el muelle tal y como se indica en la figura, desde la posición x0 hasta la x1, habrá que realizar un trabajo para vencer la fuerza recuperadora F = - kx  El resultado depende solo de las posiciones x0 y x1; por tanto, la fuerza es conservativa FINAL

El campo gravitatorio. Movimientos bajo fuerzas gravitatorias Energía potencial  Una característica de los campos conservativos es que puede definirse una magnitud denominada energía potencial  Los cambios producidos en la energía potencial, indican el trabajo realizado por las fuerzas del campo  Este trabajo no depende del camino recorrido sino de las posiciones inicial (A) y final (B) en las que se encuentra el cuerpo Teorema de la energía potencial: En un campo conservativo el trabajo realizado por las fuerzas del campo es igual a la variación de la energía potencial cambiada de signo  Conocido el valor de la fuerza:  Considerando incrementos diferenciales:  Integrando:  Si se integra la fuerza del campo entre dos puntos A y B del campo gravitatorio, se obtiene la diferencia de potencial

El campo gravitatorio. Movimientos bajo fuerzas gravitatorias Energía potencial gravitatoria  Para calcular su valor, basta con resolver: EP r  El trabajo realizado es máximo cuando los desplazamientos ( ) están en la misma dirección que , y así el producto escalar se reduce al producto de los módulos:  La Energía potencial gravitatoria es cero cuando r tiende a infinito, y por tanto C = 0, luego:

El campo gravitatorio. Movimientos bajo fuerzas gravitatorias Potencial gravitatorio  Por ser el campo gravitatorio conservativo, se puede definir una magnitud que depende únicamente del cuerpo m que crea el campo y no del m’ que se coloca como testigo  Dicha magnitud se denomina potencial U y se obtiene así:  La diferencia de potencial entre dos puntos A y B cuyas distancias al origen son rA y rB respectivamente es:

El campo gravitatorio. Movimientos bajo fuerzas gravitatorias El campo gravitatorio terrestre  Cuando se trata de cuerpos extensos, se supone la masa concentrada en el c.d.m, y además se considera para las distancias que r = RT + h P A h r = RT+h RT  El módulo del campo gravitatorio creado es:  En las proximidades de la superficie, donde h es despreciable frente al RT puede considerarse:  La fuerza ejercida sobre un cuerpo de masa m colocado a una altura h sobre la superficie terrestre será:

El campo gravitatorio. Movimientos bajo fuerzas gravitatorias Energía potencial gravitatoria terrestre P A h  La energía potencial de una masa m situada a una altura h de la superficie terrestre es: r = RT+h RT  Cuando se trata de energías potenciales, siempre se calcula la diferencia entre dos puntos, tomando como referencia uno de ellos (el de la superficie terrestre A)  Para un cuerpo situado a una altura h: y recordando el valor de g, resulta:  Haciendo la aproximación RT+h  RT y simplificando: Ep (P) – Ep (A) = m g0 h

El campo gravitatorio. Movimientos bajo fuerzas gravitatorias Potencial gravitatorio terrestre  Se obtiene de la misma forma que en el caso de la energía potencial Ep r RT  Para un punto P situado a una altura h de la superficie:  En la superficie, el potencial gravitatorio U0 será:  Teniendo en cuenta los valores de G, MT y RT resulta: U0 = - g0 R = - 6,2 . 107 J/kg

El campo gravitatorio. Movimientos bajo fuerzas gravitatorias Movimiento de masas en campos de fuerzas centrales  Un campo de fuerzas es central cuando, en cualquier punto de él, la fuerza ejercida sobre un cuerpo está en la misma recta que une el cuerpo con el origen del campo y su valor solo depende de la distancia entre ambos: m’  La fuerza es de la forma:  Si el campo es gravitatorio:  Si el campo es central, los vectores y tienen la misma dirección y su momento de fuerzas es nulo:  m La conservación del momento angular implica que se conserven módulo, dirección y sentido

El campo gravitatorio. Movimientos bajo fuerzas gravitatorias Consecuencias de la conservación del momento angular  Si el vector se conserva en dirección, sentido y módulo  Por conservar la dirección: El momento angular será perpendicular al plano que forman los vectores y , por tanto la trayectoria de la partícula debe estar en un plano  Por conservar el sentido Si conserva el sentido, la partícula siempre recorrerá la órbita en el mismo sentido, y por tanto las trayectorias de los cuerpos en el seno de campos de fuerzas centrales serán curvas planas  Por conservar el módulo: Representa el área del paralelogramo formado por los dos vectores que constituyen el producto vectorial S Sol Tierra Como , la velocidad areolar también

El campo gravitatorio. Movimientos bajo fuerzas gravitatorias Forma de las trayectorias Sol  Dado que en el seno de un campo de fuerzas gravitatorio la Ep de un cuerpo siempre es negativa, y su Ec siempre positiva, la ET de ambas podrá ser negativa, nula o positiva  Atendiendo al signo de dicha energía, la trayectoria descrita por el cuerpo, será una circunferencia, una elipse, una parábola o una hipérbola  Si CIRCUNFERENCIA  Si ELIPSE  Si ET = 0  Ec = Ep PARÁBOLA  Si ET > 0  Ec > Ep HIPÉRBOLA

El campo gravitatorio. Movimientos bajo fuerzas gravitatorias Satélites artificiales: energía total y energía de satelización Cálculo de la velocidad del satélite en la órbita Cálculo de las energías cinética y potencial Cálculo de la energía total del satélite en órbita Cálculo de la energía de satelización E0 = Ef  Ec,0 + Ep,0 = Ec,f + Ep,f 

El campo gravitatorio. Movimientos bajo fuerzas gravitatorias Escape del campo gravitatorio terrestre Velocidad de lanzamiento de un satélite  A partir del valor de la Ec de satelización, la v0 de lanzamiento necesaria para ponerlo en órbita circular desde la superficie terrestre, es: Velocidad de escape de un satélite  Para que el satélite escape de la atracción terrestre, supondremos que se marcha al infinito, (r es infinito), y la energía de escape será:  La velocidad de escape será: 

El campo gravitatorio. Movimientos bajo fuerzas gravitatorias Aplicación al cálculo del peso de un cuerpo a cierta altura Si una persona pesa 686 N en la superficie de la Tierra, ¿cuánto pesará a 9000 m de altura? Datos: G = 6,67.10-11 N m2kg-2 ; RT = 6370 km ; MT = 5,99.1024 kg  Cálculo de la masa en la superficie terrestre 9000 m  Cálculo del peso a 9000 m de altura La fuerza gravitatoria tanto a dicha distancia como sobre la superficie terrestre es:   Luego el peso de la persona a 9000 m será: F = 684,06 N

El campo gravitatorio. Movimientos bajo fuerzas gravitatorias Aplicación al cálculo de la energía mecánica de un satélite Dos satélites artificiales de masa m y 2m, respectivamente, describen órbitas circulares del mismo radio r = 2R, siendo R el radio de la Tierra. Calcular la diferencia de las energías mecánicas de ambos satélites  La energía mecánica es la suma de las energías cinética y potencial, y cuyo valor es: Satélite 1, de masa m: Satélite 2, de masa 2m: Su diferencia es: E2 – E1 =

El campo gravitatorio. Movimientos bajo fuerzas gravitatorias Aplicación al cálculo del campo y potencial gravitatorio Calcula el valor del campo y del potencial gravitatorio creado por dos masas puntuales iguales y separadas un metro, en el punto medio entre ellas Nota: Expresa la respuesta en función de G y m P m 0,5 m a) Cálculo del campo gravitatorio creado en P: Ambas masas crean en el punto intermedio, campos iguales en intensidad pero de sentidos opuestos, por lo que el campo total resultante entre ellas es nulo b) Cálculo del potencial gravitatorio creado en P: El potencial creado por la masa de la izquierda es: El potencial creado por la masa de la derecha es: El potencial total creado por ambas masas en P es: FINAL