La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Sistemas de Control y Proceso Adaptativo. Reguladores y Comunicación

Presentaciones similares


Presentación del tema: "Sistemas de Control y Proceso Adaptativo. Reguladores y Comunicación"— Transcripción de la presentación:

1 Sistemas de Control y Proceso Adaptativo. Reguladores y Comunicación

2 Controladores PID Los controladores PID representan una solución eficiente para un gran número de problemas de control. En la actualidad en torno al 95% de los controladores son del tipo PID, habiendo sobrevivido a elementos tecnológicos más novedosos . • En este tipo de controladores, la acción de control se construye como la suma de tres tipos de acciones: proporcional, integral y diferencial. La señal de control c(t) puede ser expresada por la siguiente ecuación, donde Kp es el valor de la ganancia proporcional, Ti es la constante de tiempo integral y Td es la constante de tiempo diferencial, aplicada a la señal de error e(t).

3 Controladores PID Esta misma señal, en el dominio de Laplace, tendría la siguiente expresión: Sus principales ventajas estriban en que la acción proporcional produce una señal de control proporcional a la señal de error, por lo que introduce una corrección mayor cuanto mayor es el error; la acción derivativa proporciona cierta anticipación sobre la respuesta del sistema y el término integral permite eliminar el error estacionario .

4 Controladores PID Kp determinará el valor de la acción proporcional. Si Kp es pequeña la acción proporcional también lo será y viceversa. Esta acción es fácil de sintonizar ya que solo depende de un parámetro y dado que la corrección es proporcional al error cometido, puede reducir este, aunque no eliminarlo en estado estacionario. Si solo existe acción proporcional: Esto implica que siempre hay error, el cual desciende si aumenta Kp, pero si Kp aumenta mucho pueden aparecer sobre impulso o inestabilidad .

5 Controladores PID Ti es el tiempo requerido para que la acción integral contribuya a la salida del controlador en una cantidad igual a la acción proporcional . Si Ti es pequeña, la acción integral será grande. Esta acción compensa las perturbaciones y mantiene la variable controlada en torno al punto de consigna. Al ser una acción integral, elimina los errores estacionarios. Por contra, si Ti disminuye mucho puede desestabilizar el sistema. Td es el tiempo requerido para que la acción proporcional contribuya a la salida del controlador en una cantidad igual a la acción derivativa. Si Td es pequeña la acción derivativa será pequeña. La derivada del error anticipa el efecto de la acción proporcional, estimando el error que se producirá más tarde, estabilizando más rápidamente la variable controlada después de cualquier perturbación .

6 Controladores PID Representación comparativa de la respuesta a una señal escalón de una planta para diferentes tipos de controladores (P, PI, PD, PID).

7 Controladores PID El código en Scilab para este ejemplo podría ser:
//Ejemplos de controladores P, PD, PI, PID // clear s=poly(0,'s'); //vector de tiempo t=0:0.05:50; //función de transferencia de la planta (orden 3) gp=1/((4*s+1)*(3*s+1)*(s+1)); //parametros de los controladores Kc=3;Ti=8;Td=1.5; //window xset('window',1) xname(‘Sistema de control con varios controladores PID') // //Control P gc=Kc; Mr=gc*gp/(1+gc*gp); Mrs=syslin('c',Mr); yp=csim('step',t,Mrs);

8 Controladores PID //Control PI gc=Kc*(1+1/(Ti*s)); Mr=gc*gp/(1+gc*gp);
Mrs=syslin('c',Mr); ypi=csim('step',t,Mrs); // //Control PD gc=Kc*(1+Td*s); ypd=csim('step',t,Mrs); //Control PID gc=Kc*(1+1/(Ti*s)+Td*s); ypid=csim('step',t,Mrs); //respuesta escalón //graphic subplot(1,2,1);xset('font',2,3) plot2d(t',[yp; ypi; ypd; ypid]',style=[2,3,5,6]),xgrid(4) //títulos y leyendas xtitle('Step response','time','y(t)'); legends(['Control P';'Control PI';'Control PD';'Control PID'],[2,3,5,6],opt=1) xstring(22,0.6,'Gp=1/((4*s+1)*(3*s+1)*(s+1)), Kc= 3, Ti= 8, Td= 1.5') //

9 Controladores PID Reglas de sintonía
Generalmente los controladores PID son ajustados in situ, con el fin de abarcar todas las características de la planta. Existen métodos de ajuste o sintonía tanto analíticos como experimentales, incluso de tipo automático. Los métodos analíticos requieren conocer la función de transferencia que se desea, por lo que habitualmente se utilizan los métodos experimentales. A la hora de diseñar un controlador se podría recurrir a un controlador cuya complejidad coincidiera con la del proceso a controlar. Sin embargo, por razones obvias, es necesario utilizar un controlador cuya complejidad sea más restringida, en cuyo caso se puede o bien simplificar el modelo del proceso hasta aproximarlo a un controlador PID o diseñar un controlador para un modelo complejo y aproximarlo mediante un controlador PID. En ambos casos resulta necesaria una sintonización o ajuste del controlador para conseguir que cumpla con su cometido de la manera más satisfactoria. Esta necesidad dio lugar a la aparición de diversos métodos de sintonización para este tipo de controladores. La variación de cualquiera de los parámetros puede afectar al funcionamiento del controlador, por lo que es preciso seguir un proceso de ajuste determinado. En las siguientes figuras se aprecian los efectos de la disminución (izquierda) o aumento (derecha) de las distintas variables de forma independiente, es decir, manteniendo invariables las otras.

10 Controladores PID Reglas de sintonía
Ejemplo: efecto de disminuir (izquierda) e incrementar (derecha) el valor deTi entre 4 y 12 (el valor correcto deTi podría ser8).

11 Controladores PID Reglas de sintonía
Existen un gran número de métodos de sintonía, cada uno más adecuado según el tipo de planta, el tipo de controlador o las especificaciones requeridas. Algunos de los más utilizados son: Método Ziegler-Nichols de la respuesta al escalón Método Ziegler-Nichols de la respuesta en frecuencia Método de Chien, Hrones, y Reswick (CHR) Método de Cohen-Coon Sintonía empírica basada en reglas

12 Controladores PID Reglas de sintonía
Método Ziegler-Nichols de la respuesta al escalón: consiste en información del proceso en base a cómo es su respuesta a una señal escalón. La respuesta a un escalón solo necesita dos parámetros (figure). Se determina el punto donde la pendiente de la respuesta a un escalón tiene su máximo. El corte de la recta tangente a este punto con el eje real nos da los valores a y L (figure). Ziegler-Nichols determinaron el cálculo de los parámetros del controlador según la siguiente tabla :

13 Controladores PID Reglas de sintonía
Método Ziegler-Nichols de la respuesta en frecuencia: este método se basa en el conocimiento del punto del diagrama de Nyquist del proceso en el que este diagrama corta con el eje real negativo. Este método viene a representar que un punto de la traza de Nyquist se puede desplazar cambiando los parámetros de un controlador PID. El proceso es el siguiente: Para llevar a cabo su ajuste es necesario ajustar previamente la constante de tiempo integral Ti a su máximo valor (∞) y la de tiempo diferencial Td a su valor mínimo (0). A continuación, comenzando por un valor pequeño, se ajustaría el valor de Kp hasta que el proceso comienza a oscilar, lo que ocurre para un valor de Kp = Ku siendo el periodo de oscilación Tu. Los valores calculados por este método son los indicados en la siguiente tabla:

14 Controladores PID Reglas de sintonía
Experimentalmente, este método puede llevarse a cabo de la siguiente forma : 1. Ajuste de la ganancia proporcional: Para llevar a cabo su ajuste es necesario ajustar previamente la constante de tiempo integral Ti a su máximo valor y la de tiempo diferencial Td a su valor mínimo. A continuación, comenzando por un valor pequeño, se ajustaría el valor de Kp hasta obtener el valor de salida deseado . 2. Ajuste de la acción integral: Una vez ajustada la ganancia proporcional se procedería a reducir la constante de tiempo integral Ti hasta eliminar el error estacionario (objetivo de esta acción). Podría ocurrir que apareciera una importante oscilación. Se disminuiría la ganancia ligeramente y se repetiría el proceso hasta que se obtuvieran los valores de respuesta deseados​. 3. Ajuste de la acción derivativa o diferencial: Manteniendo los valores ajustados anteriormente se iría incrementando el valor de Td hasta que se obtuviera una respuesta más rápida. Si fuese necesario se incrementaría ligeramente el valor de ganancia.

15 Controladores PID Reglas de sintonía
Método de Chien, Hrones y Reswick (CHR): para sintonizar un controlador PID por este método, los parámetros a y L se determina de la misma forma que en el método Ziegler-Nichols, dándose los parámetros del controlador en función de estos valores. Este método determina diferentes valores en función del porcentaje de sobre elongación y según se obtengan de la respuesta a perturbaciones en la carga o variaciones en el punto de consigna. Los valores para los parámetros del controlador obtenidos de la respuesta a perturbaciones en la carga son los indicados en la siguientes tabla:

16 Controladores PID Reglas de sintonía
Los parámetros del controlador obtenidos de la respuesta a cambios en el punto de consigna son los indicados en la siguiente tabla :

17 Controladores PID Reglas de sintonía
Método Cohen-Coon: este método se basa en un modelo del proceso tal que: El criterio principal de diseño es el rechazo de las perturbaciones de carga, e igualmente establece una tabla de valores basándose en cálculos analíticos y numéricos. Considerando :

18 Controladores PID Reglas de sintonía
Sintonía empírica basada en reglas: los métodos descritos anteriormente son métodos aproximados que necesitan de una sintonía manual posterior. Esta sintonía manual se realiza sobre la respuesta en lazo cerrado, introduciendo una perturbación (cambio en el punto de consigna, cambio en la variable de control, etc.) analizándose la respuesta y corrigiendo los parámetros del controlador. Estos ajustes se basan en reglas simples, desarrolladas a partir de un proceso de experimentación. Estas reglas son: - El aumento de la ganancia proporcional disminuye la estabilidad. - El error decae más rápidamente si se disminuye el tiempo de integración. - Disminuyendo el tiempo de integración disminuye la estabilidad. - Aumentando el tiempo derivativo aumenta la estabilidad. Como se puede apreciar, el cambio de un parámetro en un sentido u otro afecta de forma diferente a la sintonía. Por este motivo es habitual utilizar mapas de sintonía cuyo objetivo es mostrar, de forma intuitiva, cómo afectan los cambios en los parámetros del controlador en el comportamiento del sistema en lazo cerrado. De esta forma se pueden definir márgenes dentro de los cuales se pueden mover los valores de los parámetros o valores límite para los que el sistema se volvería inestable. Estas reglas de sintonía fueron implementadas en procesos de sintonía automática .

19 Controladores PID Diseño de Controladores
Diseño Basico: Para un diseño básico, en primer lugar se elegirá la topología del sistema, es decir, dónde se ubicará el controlador: serie, paralelo . Una vez elegida la configuración del controlador, se debe elegir un tipo de controlador que satisfaga las especificaciones requeridas, el más utilizado es el controlador del tipo PID. De esta forma se restringe la complejidad del controlador. También se pueden utilizar redes de compensación en adelanto, atraso o atraso-adelanto

20 Controladores PID Diseño de Controladores
Una vez elegido el controlador, y en función de las especificaciones requeridas, se deben determinar sus parámetros, para lo cual se elegirá el método de análisis a utilizar más adecuado según las especificaciones: lugar de las raíces o frecuencial. Finalmente se debe comprobar que el sistema diseñado cumple con la función requerida y, si fuese necesario, reajustar los parámetros para que así sea.

21 Controladores PID Diseño de Controladores
Diseño mejorado: en ocasiones es conveniente trasladar alguna de las acciones del controlador al lazo de realimentación. Por ejemplo, si en un controlador PID se tiene una entrada escalón, la parte derivativa hace que se tenga un impulso en el control. Por tanto, se recurre a otras configuraciones posibles que eviten los problemas que se pueden presentar.

22 Controladores PID Diseño de Controladores
Controlador PI-D: evita el fenómeno de la reacción del punto de ajuste. Se evitan acciones de control agresivas que puedan dañar los actuadores. La acción se vuelve más lenta y se reduce el sobreimpulso.

23 Controladores PID Diseño de Controladores
Controlador I-PD: acciones proporcional y derivativas solo en la realimentación. Con este tipo de control, ante una señal escalón no se produce un cambio brusco en la señal de control, lo que puede no ser conveniente para algunos tipos de actuadores.

24 Controladores PID Diseño de Controladores
Control integral con configuración de realimentación del estado: permite un control más fino si aumenta el orden de la planta. Controladores PI-PD, PID-PD: los controladores PI-PD representan un excelente controlador de cuatro parámetros para el control de procesos integrantes, inestables y resonantes . Control Feed-forward: permite medir las perturbaciones y llevar a cabo una acción correctiva en cuanto la perturbación aparece.

25 Controladores PID Diseño de Controladores
Con los controladores PID aparecen una serie de problemas, como son: - La sintonía: la elección de los valores de los parámetros Kp, Ti y Td puede llegar a complicarse, de hecho se ha observado que según el método de sintonía elegido estos valores pueden ser diferentes. - Efecto Windup integral: se produce cuando la acción de control aumenta tanto que se produce una saturación en los actuadores. Este problema rompe el lazo de control ya que el actuador se mantendrá en su valor límite independientemente de la señal de control. El control no volverá a ser efectivo hasta que la señal de control baje por debajo del nivel de saturación. Para eliminar este efecto existen multitud de configuraciones del controlador que permiten anular el problema.

26 Controladores PID Diseño de Controladores
Diseño robusto: el primer paso a la hora de diseñar un sistema de control es diseñar un modelo matemático equivalente de la planta física. En ocasiones este modelo puede no ser lineal o demasiado complejo. Un modelo complejo no resulta demasiado útil porque complica excesivamente el proceso de diseño. Por ello se recurre a modelos más simples pero que a la vez reflejen las características intrínsecas del sistema físico. Evidentemente esta solución genera una incertidumbre sobre si el control diseñado será adecuado para la función requerida, incertidumbre que podrá ser de diferentes tipos dependiendo de las características que se estimen (estabilidad, margen de ganancia, margen de fase, etc.). La incertidumbre es agregada al modelo nominal pudiendo ser tratada de diferentes formas.

27 Controladores PID Diseño de Controladores
En la teoría de control robusto se pretende aproximar el modelo de la planta mediante un modelo lineal con coeficientes constantes, sabiendo que se incurrirá en un error que se pretende esté acotado. De esta forma se pueden diseñar técnicas de control válidas para sistemas multivariable, que aseguren como mínimo la estabilidad del sistema En un control robusto el sistema ha de ser estable para todo el conjunto de situaciones de la planta y el rendimiento debe cumplir las especificaciones de diseño para todas las situaciones posibles, es decir, en presencia de incertidumbre.

28 Controladores PID Diseño de Controladores
Se hace por tanto indispensable determinar el tipo de incertidumbre (paramétrica, estructurada, no estructurada) para poder determinar su tamaño e importancia y poder acotarla. Para estimar la incertidumbre se puede recurrir a los datos de los sensores y actuadores, a experimentación con el sistema en diferentes puntos de funcionamiento, etc. Para sistemas multivariable se debe elegir la descripción más próxima al efecto que causa la incertidumbre. El margen de robustez está relacionado con el tipo específico de modelo de incertidumbre.

29 Controladores PID Diseño de Controladores
Diseño por el método de asignación de polos: muchas de las propiedades de un sistema se expresan por sus polos. Con este método se pretende diseñar un controlador para que el sistema en lazo cerrado tenga los polos en el lugar deseado. El método requiere un modelo completo del proceso. Es posible encontrar un controlador que da los polos en lazo cerrado deseados, con la condición de que el controlador sea lo suficientemente complejo. Para un control PID es necesario restringir la complejidad del modelo mediante métodos de aproximación, por ello, los polos que se seleccionen deben escogerse de forma que aseguren que el modelo es válido. El proceso de diseño dependerá del tipo de controlador (PI, PID) y de las características del sistema (número de polos, orden, sistema oscilatorio, etc.)

30 Controladores PID Diseño de Controladores
Diseño de polos dominantes: es una simplificación del método anterior. En ocasiones es difícil especificar todos los polos en lazo cerrado, por lo que se utilizan los polos dominantes para caracterizar al sistema. Sintonía Lambda: es un caso especial del método de la asignación de polos. Es un método sencillo que puede dar buenos resultados en ciertas circunstancias siempre que el parámetro de diseño se escoja adecuadamente. El método básico cancela un polo del proceso, lo que se traducirá en una pobre respuesta de las perturbaciones de carga en procesos dominados por constante de tiempo.

31 Controladores PID Diseño de Controladores
Diseño algebraico: es un proceso en el que la función de transferencia del controlador se obtiene de las especificaciones mediante un método algebraico directo. Existen diversos métodos, todos ellos relacionados con la asignación de polos. - Formas estándar: se comienza por determinar una función de transferencia de una forma determinada, calculando sus parámetros de manera que se minimice el criterio de error elegido. - Método de Haalman: para sistemas con retardo L, Haalman propuso seleccionar una función de transferencia del lazo de la forma dependiendo de la función de transferencia del proceso y aplicando este método, será fácil determinar los parámetros y el tipo de controlador.

32 Controladores PID Diseño de Controladores
Control con modelo interno: su nombre proviene del hecho de que el controlador contiene internamente un modelo del proceso. Este modelo ( Pm(s) ) se conecta en paralelo con el proceso y se aplica la inversa del modelo Pim(s) y un filtro (Gf). Se considera que todas las perturbaciones que afectan al proceso se reducen a una perturbación equivalente d. El controlador obtenido se puede representar por la función siguiente, de la que se deduce que este tipo de controlador serie cancela los polos y ceros del proceso.

33 Controladores PID Diseño de Controladores
Diseño para rechazo por perturbaciones: en los métodos anteriores solo se ha tenido en cuenta la caracterización de la dinámica del proceso, sin considerar directamente las perturbaciones. Para el estudio se ha utilizado una perturbación de tipo escalón y se ha analizado la respuesta del sistema, pero no todas las perturbaciones tienen esta forma. Además no se ha tenido en cuenta la amplificación del ruido de medida en la realimentación. Con un diseño orientado al rechazo por perturbaciones lo que se pretende es tener una solución de compromiso entre la atenuación de las perturbaciones de carga y la amplificación del ruido de medida debido a la realimentación.

34 PID controllers Operation conditions
Son muchos los requisitos que se le exigen a un sistema de control. Como se ha comentado, en torno al 95% de los controladores instalados son del tipo PID lo que demuestra que este tipo de controladores funciona correctamente siempre que las condiciones exigidas no sean demasiado estrictas. Por lo general, la mayoría de procesos estables pueden ser controlados mediante un controlador PI, de hecho, es frecuente que la acción derivativa no se utilice. Esto ocurre en la mayoría de procesos de primer orden. El controlador PID suele ser suficiente en procesos de segundo orden e incluso en aquellos procesos con retardo en el que la acción derivativa pueda ser suficiente para acelerar la respuesta del sistema. Sin embargo, este tipo de controladores no será suficiente en procesos de orden superior, en sistemas con grandes retardos, en sistemas con modos oscilatorios o con ruidos significativos. Del mismo modo, no será suficiente cuando se pretendan conseguir un control muy exhaustivo. Para todos estos casos es conveniente la utilización de sistemas de control más sofisticados que el PID.

35 Referencias Bibliografía Karl J. Åström. Control PID Avanzado.
Karl J. Åström. PID Controllers: Theory, Design and Tunning. Enlaces de interés


Descargar ppt "Sistemas de Control y Proceso Adaptativo. Reguladores y Comunicación"

Presentaciones similares


Anuncios Google