La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

“Superredes Superconductor Magnético” Ghenzi Nestor Fabian. Director: Julio Guimpel Director: Julio Guimpel Grupo de Bajas Temperaturas. Centro Atómico.

Presentaciones similares


Presentación del tema: "“Superredes Superconductor Magnético” Ghenzi Nestor Fabian. Director: Julio Guimpel Director: Julio Guimpel Grupo de Bajas Temperaturas. Centro Atómico."— Transcripción de la presentación:

1 “Superredes Superconductor Magnético” Ghenzi Nestor Fabian. Director: Julio Guimpel Director: Julio Guimpel Grupo de Bajas Temperaturas. Centro Atómico Bariloche. CNEA y Universidad Nacional de Cuyo. ghenzin@ib.cnea.gov.ar Charla Maestría en Ciencias Físicas. 15 de Diciembre de 2008. San Carlos de Bariloche, Río Negro. Argentina.

2 Superred Motivación

3 Motivación M eq de un superconductor Tipo II

4 Superred Motivación M eq de un superconductor Tipo II Ciclo de Histéresis de un Ferromagneto

5 Motivación Oscilación de la T c con el espesor de la capa ferromagnética Jiang et al (1995)

6 Motivación Oscilación de la T c con el espesor de la capa ferromagnética Debido a la presencia de campos dispersos de la capa ferromagnética el campo efectivo sentido por el superconductor es diferente del aplicado, por lo que la respuesta macroscópica puede ser caracterizada como paramagnética a pesar de que el superconductor presenta una respuesta diamagnética Monton et al (2007) Jiang et al (1995)

7 Fabricación de las superredes “Sputtering” o Pulverización catódica

8 Fabricación de las superredes “Sputtering” o Pulverización catódica Superred simétrica

9 Fabricación y técnicas de medición Se realizaron medidas por susceptibilidad AC y por transporte eléctrico a cuatro puntas.

10 Fabricación y técnicas de medición Se realizaron medidas por susceptibilidad AC y por transporte eléctrico a cuatro puntas.

11 Fabricación y técnicas de medición Se realizaron medidas por susceptibilidad AC y por transporte eléctrico a cuatro puntas. Se quiere medir densidad de corriente crítica (Jc). Para esto se realiza un pattern. Se aplica un recubrimiento con photoresist Microposit 1400 por medio de litografía óptica. Luego se ataca por medio de la técnica RIE Reactive Ion etching

12 Fabricación y técnicas de medición Se realizaron medidas por susceptibilidad AC y por transporte eléctrico a cuatro puntas. Lift off Se quiere medir densidad de corriente critica (Jc). Para esto se realiza un pattern. Se aplica un recubrimiento con photoresist Microposit 1400 por medio de litografía óptica. Luego se ataca por medio de la técnica RIE

13 Caracterización estructural: rayos x Espectro de RX de alto ángulo de [Nb100Co100] 10

14 Caracterización estructural: rayos x Espectro de RX de alto ángulo de [Nb100Co100] 10 Espectro de RX de alto ángulo de [Nb30Co30] 16

15 Caracterización estructural: rayos x Espectro de RX de alto ángulo de [Nb100Co100] 10 Espectro de RX de alto ángulo de [Nb30Co30] 16 Espectro de RX de bajo ángulo de [Nb30Co30] 16

16 Caracterización magnética: Ciclos de histéresis Estado normal del Nb : solo mido la respuesta magnética del Co Capa muerta

17 Caracterización magnética: Ciclos de histéresis Estado normal del Nb : solo mido la respuesta magnética del Co

18 Caracterización superconductora:T CS Caracterización superconductora: T CS Se midió la T CS a través de susceptibilidad AC, M vs. T y R vs. T

19 H - T

20 Acople superconductor:Nb440Co100 Acople superconductor: Nb440Co100  En la dirección perpendicular  En la dirección paralela Se observa un comportamiento lineal en la dirección perpendicular y un comportamiento tipo raíz cuadrada en la dirección paralela por lo que podemos decir que actúan como un conjunto de capas superconductoras independientes

21 Acople superconductor:Nb440Co7 Acople superconductor: Nb440Co7  En la dirección perpendicular  En la dirección paralela En las dos direcciones se observa un comportamiento lineal. Podría ser explicado por superconductividad de superficie o que los films superconductores están acoplados con anisotropía.

22 Acople superconductor:Nb440Co7 Acople superconductor: Nb440Co7 Tinkham para un film delgado Lawrence y Doniach con un modelo de capas acopladas

23 Acople superconductor:Nb440Co7 Acople superconductor: Nb440Co7 Tinkham para un film delgado Lawrence y Doniach con un modelo de capas acopladas

24 Acople superconductor:Nb200Co7 50 Co Acople superconductor: Nb200Co7 50 Co

25 Tomando el onset y el valor a mitad de altura observamos que la 1° transición se debe a superconductividad de superficie y la 2° se debe a la transición Bulk. Además vemos que las capas actuán acopladas de acuerdo al modelo de Lawrence – Doniach. (En susceptibilidad AC. uno solo veía la superconductividad de superficie )

26 Diagrama de fases:Nb400Co7 1000 Cu Diagrama de fases: Nb400Co7 1000 Cu

27 Jc

28 Corriente crítica: Nb 200 Co x

29  Del Loop superconductor se puede calcular la corriente crítica como

30 Corriente crítica: Nb 400 Co7 1000Cu

31

32

33

34 Conclusiones  Se estudio el diagrama de fases J-H-T en superredes superconductoras- ferromagnéticas Nb-Co  Se encontró que el límite entre capas desacopladas y acopladas está en 7 A  Se encontró una dependencia no monótona de Jc con campo y temperatura.. Se cree que se origina debido al efecto pico, el cual es debido a un ablandamiento de la red de vórtices. Otra posible explicación es un matching entre la red de vórtices y la separación de los planos de Co.  A futuro es necesario estudiar la dependencia de Jc con los espesores de film ferromagnético y superconductor. Sería interesante medir la respuesta de la susceptibilidad AC en función de la frecuencia de excitación del campo de modulación.

35 Gracias por su atención

36

37

38

39

40 Por qué el matching depende de T ??? H1H1 < H 2 < H 3 Energía libre de vórtice en una chapa


Descargar ppt "“Superredes Superconductor Magnético” Ghenzi Nestor Fabian. Director: Julio Guimpel Director: Julio Guimpel Grupo de Bajas Temperaturas. Centro Atómico."

Presentaciones similares


Anuncios Google