La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Tensiones y deformaciones

Presentaciones similares


Presentación del tema: "Tensiones y deformaciones"— Transcripción de la presentación:

1 Tensiones y deformaciones
Elasticidad Tensiones y deformaciones FN FC N = FN / A tensión normal  = FC / A tensión de corte Ashby Jones I

2 Tensión o compresión uniaxial
Tensión de corte Presión hidrostática

3 Tensión uniaxial: Deformación normal L = u/l Deformación transversal t = v/l Módulo de Poisson:  = - t / L Tensión de corte: Deformación de corte  = w/l = tg θ  θ (ángulos pequeños)

4 dilatación  = V/V  3l/l
Presión hidrostática dilatación  = V/V  3l/l Ley de Hooke: deformaciones pequeñas  las tensiones son proporcionales a las deformaciones N = E N ; E: módulo de Young = G  ; G ( = µ): Módulo de corte p = -K  ; K = módulo de compresión

5 dilatación  = V/V  3l/l
Presión hidrostática dilatación  = V/V  3l/l Ley de Hooke: deformaciones pequeñas  las tensiones son proporcionales a las deformaciones N = E N ; E: módulo de Young = G  ; G ( = µ): Módulo de corte p = -K  ; K = módulo de compresión

6 Ashby-Jones

7 Ashby-Jones

8 Módulo de Young (E) Ashby-Jones

9 E, G y K tienen unidades de tensión (Mpa)
En un material isótropo G = E / 2(1 + ); E = 9GK / (3K + G) ; E = 3K ( 1 -2) Para metales,   1/3; G  (3/8) E; K  E K  curvatura

10 Tensor de tensiones La tensión aplicada sobre un plano de normal n es:
La fuerza aplicada sobre un área definida por dos vectores r1 y r2 es: r1 x r2 r1 r2

11 Tensor de deformaciones
Una tensión aplicada produce desplazamientos: (x1, x2, x3)  (x1 + u1, x2 + u2 , x3 + u3) Se definen las deformaciones como:

12 Ley de Hooke generalizada
Cijkl es la matriz de constantes elásticas En un material isótropo: Los componentes de Cijkl se escriben como combinación de los módulos E, G y  Muchos componentes Cijkl son nulos.

13 Ley de Hooke generalizada:

14 Tensión uniaxial:

15 Tensión de corte:   = 2G 12 = G  ( = 212 )

16 Energía elástica:   Tensión uniaxial:
Análogamente, para tensión de corte puro Para tensión multiaxial:

17 Deformación elástica  = 0

18 Comportamientos elásticos
Comportamiento lineal Comportamiento no-lineal Comportamiento anelástico

19 Deformación plástica Ej: metal
Pasado el límite elástico,  deformación permanente: deformación plástica tensión deformación Deformación Permanente

20 Líneas de deslizamiento
Bordes de grano líneas de deslizamiento C. J. McMahon Jr. – C. D. Graham Jr. Introduction to Engineering Materials: The bicycle and the Walkman

21 Deformación plástica Deformación plástica Deformación elástica tensión
 = 0 Deformación plástica tensión deformación  = 0 C. J. McMahon Jr. – C. D. Graham Jr. Introduction to Engineering Materials: The bicycle and the Walkman

22 Micro pilares de Mg; Ensayo de compresión 1,6 um
J.R. Greer, J.Th.M. De Hosson / Progress in Materials Science 56 (2011) 654–724

23 Plano de deslizamiento Dirección de deslizamiento
Sistemas de deslizamiento estructura material Plano de deslizamiento Dirección de deslizamiento FCC Cu, Ag, Au, Al {1 1 1} <-1 1 0> BCC -Fe, W, Mb -Fe, W -Fe, K {1 1 0} {2 1 1} {3 2 1} < > HCP Cd, Zn, Mg, Ti, Be (0001) < > basal Ti, Mg, Zr { } prismáticos { } piramidales basal prismático piramidal

24 Tensión resuelta Es la tensión de corte efectiva sobre un sistema de deslizamiento específico  = F/A Factor de Schmid 0 < | | < /2

25 Tensión de corte teórica para la deformación plástica
  G / 6  E / 16

26 Material Structure System CRSS (Mpa)
Tensión crítica resuelta para deslizamiento (Critical resolved Shear Stress) (CRSS) Material Structure System CRSS (Mpa) Cu FCC {111}<110> 0,6 Al 1,0 Zn HCP {0001}< > 0,18 Cd 0,57 Zr {1010}< > 6,2 Ti 49 110 Fe BCC ({110},{112},{123})<111> 28 Reed-Hill / Abbaschian

27 1934: Orowan, Polanyi y Taylor proponen que el mecanismo de la deformación plástica es el deslizamiento de dislocaciones de borde. 1938: Burgers propone que también el movimiento de dislocaciones de hélice son un mecanismo para la deforamción plástica. 1954: observación directa de dislocaciones por microscopía electrónica de transmisión.

28 Deformación por deslizamiento de una dislocación de borde
Mecanismos microscópicos de la deformación plástica Deformación por deslizamiento de una dislocación de borde Engineering Materials – M. F. Ashby, D.R.H. Jones

29 Deformación por deslizamiento de una dislocación de hélice.

30 Sistemas de deslizamiento Movimiento de dislocaciones
Mecanismo microscópico de deformación plástica:  deslizamiento de dislocaciones Sistemas de deslizamiento plano dirección Movimiento de dislocaciones plano de deslizamiento vector de Burgers

31 Estudio del comportamiento mecánico de materiales
Probetas y máquinas de ensayos mecánicos. Callister

32 Laboratorio de ensayos mecánicos, edificio de Materiales
Instron 1123 Electromecánica

33 Instron 5563 Electromecánica
Laboratorio de ensayos mecánicos, edificio de Materiales Instron Electromecánica

34 Laboratorio de ensayos mecánicos, edificio de Materiales
MTS 810 hidraulica

35 Comportamiento mecánico de metales
Tensión de fluencia por el método de la deformación de 0.002 Comportamiento de algunos aceros tensión tensión deformación deformación Callister

36 resistencia a la tracción
Ensayo de tracción hasta rotura en un material dúctil Carga de rotura o resistencia a la tracción Tensión Deformación Callister

37

38 Curva de tensión deformación en material dúctil y frágil
Callister 38

39 Comportamiento mecánico del hierro como función de la temperatura
Transición dúctil-frágil Callister 39

40 Ensayos de tracción en polímeros

41 Ensayos de tracción en polímeros

42 Ensayos mecánicos de cerámicos
Callister

43 Cerámicos

44 Ashby-Jones I

45 Ashby-Jones I

46 Tensión de fluencia de diferentes materiales
Ashby-Jones I

47 Ensayo de tracción hasta rotura en un material dúctil
Tensión Deformación Callister 47

48 Comportamiento típico de un metal dúctil
Módulo de Young Tensión n stress Resistencia mecánica (Y) Tensile Strength Tensión de prueba 0,1% 0.1% Proof stress Tensión de fluencia (Y) Yield strength 0,1% Deformación n strain Deformación a la rotura Strain after fracture (F) Ashby Jones I

49 Tensión y deformación nominales (ingenieriles) y reales
A0: área inicial; A: área l0: longitud inicial l: longitud A0 . l0 = A . l Tensiones nominales o ingenieriles: n = F / A0: tensión nominal n =  l / l0: deformación nominal Tensiones reales  = ln (1 + ); deformación real  = F / A: tensión real  = F / A = F.l / A0 . L0 = (1 + )

50 Inestabilidad  angostamiento localizado
Condición: dF = 0; d(.A) = 0  Ad + dA = 0  d / = - dA/A = dl/l = d  d / = d ó d/d =  Deformación  Tensión  (n vs. n)

51 Propiedades de dislocaciones
Campo de distorsión elástica alrededor de dislocaciones hélice borde Energía (por unidad de línea) de una dislocación (= tensión de línea) Fuerza sobre una dislocación Fuente de dislocaciones

52 Dislocación de hélice: cálculo de los tensores de tensiones y deformaciones
ℓ|| z Campo de desplazamiento: Elementos del tensor de deformaciones: Elementos del tensor de tensiones: 52

53 Dislocación de hélice: campo de tensiones
ℓ|| z 53

54 Dislocación de borde: tensor de tensiones
ℓ|| z 54

55 Dislocación de borde: campo de tensiones
ℓ|| z y x 55

56 Energía por unidad de línea de una dislocación de hélice:
Energía del núcleo de la dislocación  0,2 Gb2 R: radio máximo ro: radio mínimo hasta donde vale la teoría elástica del continuo R ~ 1 m; ro ~ 0,2 nm  ln (R/ro) ~ 8,5 T = Gb2 (Ashby-Jones: T = Gb2 / 2) Densidad de energía por unidad de volumen: Energía por unidad de línea: 56

57 Energía por unidad de línea de una dislocación de borde:
57

58 Fuerza sobre una dislocación
l2 r  ; tensión de corte r: distancia que se desplaza la dislocación trabajo En general: dislocación de vector de Burgers b y línea l, en presencia de un campo de tensiones , se desplaza r. El área barrida por la dislocación es : l x r Fuerza de Peach-Koehler 58

59 Interacciones entre dislocaciones:
Para el caso de dos dislocaciones: se utiliza la expresión de Peach y Koehler, usando para  el tensor de tensiones generado por una dislocación (b, l) Fuerza entre dislocaciones (por unidad de línea): 59

60 Curvatura de una dislocación anclada en dos puntos
R M z T x M Z: X: 60

61 Multiplicación de dislocaciones: fuente de Frank-Read
Rc = L/2 L R > Rc 61

62 Multiplicación de dislocaciones
Fuente de dislocaciones tipo Frank-Read Si “soldado” Si K.B. Kostin, universidad de Kiel (Alemania) 62

63 Fuente de Frank Read con un solo punto de anclaje
Silicio Fuente: Ceramic Materials Science and Engineering; C. Barry Carter and M. Grant Norton; Springer 2007 63

64 Mecanismos de endurecimiento
Endurecimiento por solución sólida Endurecimiento por trabajado Endurecimiento por precipitados Endurecimiento por reducción del tamaño de grano 64

65 Resistencia intrínseca al deslizamiento de una dislocación:
Fuerza de Peierls-Nabarro p = fp / b 65

66 Material Structure System CRSS (Mpa)
Tensión crítica resuelta para deslizamiento (Critical resolved Shear Stress) (CRSS) Material Structure System CRSS (Mpa) Cu FCC {111}<110> 0,6 Al 1,0 Zn HCP {0001}< > 0,18 Cd 0,57 Zr {1010}< > 6,2 Ti 49 110 Fe BCC ({110},{112},{123})<111> 28 Reed-Hill / Abbaschian 66

67 Endurecimiento por solución sólida (latón -Cu-Zn, Al-Mg, etc.))
Interacción de impurezas sustitucionales con dislocaciones Callister 67

68  ss = fss / b Cu-Ni Endurecimiento por solución sólida: ∆ ~ √c
Pérdida de ductilidad  ss = fss / b Callister 68

69 t = ft / b Endurecimiento por trabajado (deformación plástica)
Fe %C α-Cu-Zn t = ft / b Callister 69

70 Endurecimiento por trabajado (deformación plástica)
Callister 70

71 Endurecimiento por precipitación: obstáculos impenetrables
bL = 2T (T tensión de línea) Si  > 2T/bL La dislocación supera los obstáculos. lazos de Orowan obs = fobs / b ; fobs = 2T/L (d) 71

72 Lazos de Orowan Cu-30%Zn () con partículas de Al2O3
J. P. Hirth en Physical Metallurgy (Cahn-Haasen Eds) Vol3. Cap 72

73 Resumen de mecanismos de endurecimiento
Endurecimiento por solución sólida Endurecimiento por precipitación Endurecimiento por trabajado Ashby-Shercliff-Cebon Materilas Engineering, Science, Processing and Design 73

74 Y ≈ 3 Y Las diferentes contribuciones al endurecimiento se suman:
Cada mecanismo (j) aporta una tensión fj / b; entonces Y será: Y = fP /b + fss /b + ft /b + fobs /b. En un policristal, la tensión aplicada para lograr una tensión de corte Y será de al menos 2 Y (por el factor de Schmid). Para esa tensión comienzan a deformar los granos mejor orientados. La deformación masiva comienza a una tensión más alta, en factor (factor de Taylor, ≈ 1,5). que promedia la tensión sobre todos los posibles planos de deslizamiento. Por lo tanto, la tensión de fluencia será: Y ≈ 3 Y

75 Endurecimiento por reducción del tamaño de grano
“pile-up”: acumulación de dislocaciones frente a un borde de grano: Callister 75

76 Endurecimiento por reducción del tamaño de grano
Relación de Hall-Petch Y = Yo + A.d(-1/2) Cu-30%Zn () Callister 76 76


Descargar ppt "Tensiones y deformaciones"

Presentaciones similares


Anuncios Google