La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

La transformada de Laplace

Presentaciones similares


Presentación del tema: "La transformada de Laplace"— Transcripción de la presentación:

1 La transformada de Laplace

2 Pierre-Simon Laplace (1749 - 1827)
"Podemos mirar el estado presente del universo como el efecto del pasado y la causa de su futuro. Se podría condensar un intelecto que en cualquier momento dado sabría todas las fuerzas que animan la naturaleza y las posiciones de los seres que la componen, si este intelecto fuera lo suficientemente vasto para someter los datos al análisis, podría condensar en una simple fórmula el movimiento de los grandes cuerpos del universo y del átomo más ligero; para tal intelecto nada podría ser incierto y el futuro así como el pasado estarían frente sus ojos." Pierre-Simon Laplace ( )

3 La transformada de Laplace
Sea f(t) una función definida para t ≥ 0, su transformada de Laplace se define como: donde s es una variable compleja Se dice que la transformada de Laplace de f(t) existe si la integral converge.

4 Notación: Observa que la transformada de Laplace es una
integral impropia, uno de sus límites es infinito: Notación:

5 Condiciones suficientes de existencia de la TL
Si f(t) es continua a trozos en [0, ∞) y Es decir, f(t) es de orden exponencial en el infinito: Entonces: L{f(t)} = F(s) existe s > a.

6 Calcula la transformada de f(t) = 1:
Nota: Obviamente L{a} = a/s y L{0} = 0.

7 Calcula la transformada de f(t) = tn:

8 Calcula la transformada de f(t) = e-t:

9 Calcula la transformada de f(t) = Aeat:

10 Calcula la transformada de f(t) = sen(at):
Ejercicio: calcula F(s) para f(t) = cos(at)

11 Calculemos la transformada de f(t) = sen(at) de nuevo:

12 Calculemos la transformada de f(t) = eiat:

13 La función Heaviside o escalón unidad:
1 1 c c t

14 Función delta de Dirac área = 1 Sea la función parametrizada:
Observemos que

15 Así la transformada de la función delta de Dirac es:

16 Funciones periódicas Supongamos que f (t) es una función periódica de periodo T. Entonces: donde F1(s) es la transformada de Laplace de la función f(t) sobre el primer periodo y cero fuera. T

17 Demostración

18 Ejemplo: onda cuadrada

19 Tabla de transformadas de Laplace
( ) a s e n t at + - 1 ! 2 d

20

21

22

23

24

25 Transformada inversa de Laplace
Al proceso inverso de encontrar f(t) a partir de F(s) se le conoce como transformada inversa de Laplace y se obtiene mediante: conocida también como integral de Bromwich o integral de Fourier-Mellin.

26 γ determina un contorno vertical en el plano complejo, tomado de
Im(s) γ γ determina un contorno vertical en el plano complejo, tomado de tal manera que todas las singularidades de F(s) queden a su izquierda. Re(s) Con condiciones de existencia:

27 Por ejemplo, determinemos:
Puesto que la función a invertir tiene un polo en s = -1, entonces basta con tomar γ > -1. Tomemos γ = 0 y el contorno de integración C de la figura. Im(s) R C1 γ=0 -1 Re(s) -R Haciendo R→∞ y utilizando teoría de residuos: 0 por la desigualdad ML cuando R→∞ con t≥0.

28 Sea F(s) una función analítica, salvo en un número finito
de polos que se encuentran a la izquierda de cierta vertical Re(s) = γ. Y supongamos que existen m, R, k > 0 tq. para todo s del semiplano Re(s)  γ y |s| > R, tenemos que Entonces si t > 0: En particular, sea F(s) = N(s)/D(s), con N(s) y D(s) polinomios de grado n y d respectivamente, d > n; entonces podemos usar la igualdad anterior.

29 puntos singulares aislados de f(s).
Ejercicio: Calcular, a partir de su definición, la transformada inversa de Laplace de la función Im(s)‏ t > 0 t < 0 Respuesta. s=-1 s=-2 Re(s) puntos singulares aislados de f(s). s = -1; polo simple: s = -2; polo simple:

30 Ejemplo, determinar:

31 P2. Junio 2007 Emplear la integral de Bronwich para determinar
Respuesta. s = -1, s = 2, puntos singulares aislados de f

32 Im (s)‏ s=-1 s=2 Re (s)‏

33 Residuo en s = -1 Residuo en s = 2

34

35

36 Para valores de t < 0,

37 Propiedades 1. Linealidad: Si c1 y c2 son constantes, f1(x) y f2(x) son funciones cuyas transformadas de Laplace son F1(x) y F2(x), respectivamente; entonces: La transformada de Laplace es un operador lineal.

38 Demostración:

39 ò ò ò ò ( ) 2. Desplazamiento temporal F ( s ) = e f ( t ) dt X ( s )
ò F ( s ) = e - st f ( t ) dt X ( s ) = ò e - st f ( t - t ) u ( t - t ) dt = ò e - st f ( t - t ) dt ( ) l = t - t t = - st ò e e - s l f ( l ) d l = - e st F ( s )

40 Ejemplo: t 3

41 3. Desplazamiento en frecuencias
Ejemplo:

42 4. Cambio de escala en tiempo

43 5. Derivada de la transformada de Laplace

44 6. Transformada de Laplace de las derivadas de una función
La transformada de Laplace de la derivada de una función está dada por: donde f(0) es el valor de f(t) en t = 0. La transformada de Laplace de la segunda derivada de una función está dada por:

45 En forma similar: Demostración:

46 Supongamos que: Entonces:

47 Ejercicio: Determina la transformada de Laplace de la función
usando la transformada de Laplace de

48

49

50 Emplear las propiedades correspondientes para determinar la transformada de Laplace de los polinomios de Laguerre, que se definen como: Respuesta.

51

52

53 Gracias a esta propiedad y a la linealidad de
la TL podemos convertir una ec. diferencial como Resolver para y(t) en una ec. algebraica Resolver para Y(s)

54 Ec. Diferencial Transformada de Laplace Ec. Algebraica

55 Si resolvemos la ec. algebraica:
y encontramos la transformada inversa de Laplace de la solución, Y(s), encontraremos la solución de la ec. diferencial.

56 Ec. Algebraica Inversa de la Transformada de Laplace Solución de la Ec. Diferencial

57 La transformada inversa de Laplace de:
es

58 De modo que: es la solución de la ec. diferencial:

59 Para conseguirlo hemos aplicado:
Primero, que la TL y su inversa son lineales: Y segundo, la TF de las derivadas de una función son: etc...

60 A este método se le conoce como cálculo de Heaviside.
Por ejemplo: Y antitransformando obtendremos la solución.

61 Veamos un ejemplo concreto: Resolver la ec. diferencial

62 Ejemplo Resolver

63 Ejemplo: Resolver

64 7. Transformada de Laplace de la integral de una función
Si existe la TL de f(t) cuando Re(s) > p ≥ 0, entonces: para Re(s) > p.

65 Ejercicio: Obtener la transformada de Laplace de la función:
Respuesta.

66

67 8. Transformada de Laplace de f(t)/t

68 Calcula la transformada de Laplace de

69 9. TF de f(t)cos(at) y f(t)sen(at)
Ejemplo:

70 10. Teorema del valor final
Si existe, entonces: 11. Teorema del valor inicial El valor inicial f(0) de la función f(t) cuya transformada de Laplace es F(s), es:

71 como la convolución de y y se denota como
12. Integral de convolución Recordemos que la operación se conoce como la convolución de y y se denota como La transformada de Laplace de esta operación está dada por:

72 Si trabajamos con funciones que son cero para para t < 0,
entonces la convolución queda: Así que para estas funciones podemos definirla convolución como:

73 De hecho, podemos utilizar la convolución para encontrar
transformadas inversas de Laplace:

74 Ejemplo: Verificar que funciona para f(t) = t y g(t) = e-2t
con valores 0 para t < 0.

75 Ejercicio: Obtener, mediante el método operacional de Laplace, la solución del problema de Cauchy:
Respuesta.

76 Transformada de la ecuación:

77

78 Resolver la ec.integro-diferencial:

79 Antitransformando:

80 Ejercicio: Obtener, mediante el método operacional de Laplace, la solución del problema de Cauchy
Respuesta.

81

82

83 Desarrollo en fracciones parciales:
Se utiliza para facilitar el cálculo de la transformada inversa, descomponiendo la función en componentes más sencillos. Raíces del denominador D(s) o polos de F(s): Caso I – Polos reales simples Caso II – Polos reales múltiples Caso III – Polos complejos conjugados Caso IV – Polos complejos conjugados múltiples

84 Caso I – Polos reales simples
Ejemplo

85

86 método alternativo y resolver...

87 La transformada inversa de Laplace es:

88 Otro ejemplo Transformada inversa de Laplace:

89 Caso II – Polos reales múltiples
Ejemplo Polos reales múltiples Polos reales simples

90

91 Transformada inversa de Laplace:

92 En general, para polos reales múltiples:

93 Caso III – Polos complejos conjugados
conjugados complejos ejemplo Transformada inversa de Laplace:

94 ejemplo Transformada inversa de Laplace: donde

95 Caso IV – factores complejos conjugados múltiples
Se trata de repetir los métodos usados en los casos II y III, teniendo en cuenta que trabajamos con complejos.

96 Ejemplo: Obtener la solución del problema de valores iniciales siguiente, mediante el método operacional de Laplace.

97

98 Ejercicio: Obtener la transformada de Laplace de la función


Descargar ppt "La transformada de Laplace"

Presentaciones similares


Anuncios Google