La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

1 La transformada de Laplace. 2 Pierre-Simon Laplace (1749 - 1827) "Podemos mirar el estado presente del universo como el efecto del pasado y la causa.

Presentaciones similares


Presentación del tema: "1 La transformada de Laplace. 2 Pierre-Simon Laplace (1749 - 1827) "Podemos mirar el estado presente del universo como el efecto del pasado y la causa."— Transcripción de la presentación:

1 1 La transformada de Laplace

2 2 Pierre-Simon Laplace ( ) "Podemos mirar el estado presente del universo como el efecto del pasado y la causa de su futuro. Se podría condensar un intelecto que en cualquier momento dado sabría todas las fuerzas que animan la naturaleza y las posiciones de los seres que la componen, si este intelecto fuera lo suficientemente vasto para someter los datos al análisis, podría condensar en una simple fórmula el movimiento de los grandes cuerpos del universo y del átomo más ligero; para tal intelecto nada podría ser incierto y el futuro así como el pasado estarían frente sus ojos."

3 3 Sea f(t) una función definida para t 0, su transformada de Laplace se define como: donde s es una variable compleja Se dice que la transformada de Laplace de f(t) existe si la integral converge. La transformada de Laplace

4 4 Observa que la transformada de Laplace es una integral impropia, uno de sus límites es infinito: Notación:

5 5 Condiciones suficientes de existencia de la TL Si f(t) es continua a trozos en [0, ) y Es decir, f(t) es de orden exponencial en el infinito: Entonces: L{f(t)} = F(s) existe s > a.

6 6 Calcula la transformada de f(t) = 1: Nota: Obviamente L{a} = a/s y L{0} = 0.

7 7 Calcula la transformada de f(t) = t n :

8 8 Calcula la transformada de f(t) = e -t :

9 9 Calcula la transformada de f(t) = Ae at :

10 10 Calcula la transformada de f(t) = sen(at): Ejercicio: calcula F(s) para f(t) = cos(at)

11 11 Calculemos la transformada de f(t) = sen(at) de nuevo:

12 12 Calculemos la transformada de f(t) = e iat :

13 13 c 1 t La función Heaviside o escalón unidad: c 0 1

14 14 Función delta de Dirac área = 1 Sea la función parametrizada: Observemos que

15 15 Así la transformada de la función delta de Dirac es:

16 16 Funciones periódicas Supongamos que f (t) es una función periódica de periodo T. Entonces: donde F 1 (s) es la transformada de Laplace de la función f(t) sobre el primer periodo y cero fuera. T

17 17 Demostración

18 18 Ejemplo: onda cuadrada a2a

19 19 Tabla de transformadas de Laplace as e s n t t s t at n n 1 ! s

20 20

21 21

22 22

23 23

24 24

25 25 Al proceso inverso de encontrar f(t) a partir de F(s) se le conoce como transformada inversa de Laplace y se obtiene mediante: conocida también como integral de Bromwich o integral de Fourier-Mellin. Transformada inversa de Laplace

26 26 Re(s) Im(s) γ γ determina un contorno vertical en el plano complejo, tomado de tal manera que todas las singularidades de F(s) queden a su izquierda. Con condiciones de existencia:

27 27 Por ejemplo, determinemos: Puesto que la función a invertir tiene un polo en s = -1, entonces basta con tomar γ > -1. Tomemos γ = 0 y el contorno de integración C de la figura. Re(s) Im(s) γ=0 C1C1 R -R 0 por la desigualdad ML cuando R con t0. Haciendo R y utilizando teoría de residuos:

28 28 Sea F(s) una función analítica, salvo en un número finito de polos que se encuentran a la izquierda de cierta vertical Re(s) = γ. Y supongamos que existen m, R, k > 0 tq. para todo s del semiplano Re(s) γ y |s| > R, tenemos que Entonces si t > 0: En particular, sea F(s) = N(s)/D(s), con N(s) y D(s) polinomios de grado n y d respectivamente, d > n; entonces podemos usar la igualdad anterior.

29 29 Ejercicio: Calcular, a partir de su definición, la transformada inversa de Laplace de la función Respuesta. s=-1 s=-2 Re(s) Im(s) t > 0 t < 0 puntos singulares aislados de f(s). s = -1; polo simple: s = -2; polo simple:

30 30 Ejemplo, determinar:

31 31 P2. Junio Emplear la integral de Bronwich para determinar Respuesta. s = -1, s = 2, puntos singulares aislados de f

32 32 s=2 s=-1 Re (s) Im (s)

33 33 Residuo en s = -1 Residuo en s = 2

34 34

35 35

36 36 Para valores de t < 0,

37 37 1. Linealidad: Si c 1 y c 2 son constantes, f 1 (x) y f 2 (x) son funciones cuyas transformadas de Laplace son F 1 (x) y F 2 (x), respectivamente; entonces: La transformada de Laplace es un operador lineal. Propiedades

38 38 Demostración:

39 39 2. Desplazamiento temporal )( )( )( )()()( )()( sFe tt dfee dtttfe ttuttfesX tfesF st s t

40 40 Ejemplo: 3 t

41 41 3. Desplazamiento en frecuencias Ejemplo:

42 42 4. Cambio de escala en tiempo

43 43 5. Derivada de la transformada de Laplace

44 44 6. Transformada de Laplace de las derivadas de una función La transformada de Laplace de la derivada de una función está dada por: donde f(0) es el valor de f(t) en t = 0. La transformada de Laplace de la segunda derivada de una función está dada por:

45 45 En forma similar: Demostración:

46 46 Supongamos que: Entonces:

47 47 Ejercicio: Determina la transformada de Laplace de la función usando la transformada de Laplace de

48 48

49 49

50 50 Emplear las propiedades correspondientes para determinar la transformada de Laplace de los polinomios de Laguerre, que se definen como: Respuesta.

51 51

52 52

53 Gracias a esta propiedad y a la linealidad de la TL podemos convertir una ec. diferencial como en una ec. algebraica Resolver para y(t) Resolver para Y(s)

54 Ec. Diferencial Transformada de Laplace Ec. Algebraica

55 Si resolvemos la ec. algebraica: y encontramos la transformada inversa de Laplace de la solución, Y(s), encontraremos la solución de la ec. diferencial.

56 Ec. Algebraica Solución de la Ec. Diferencial Inversa de la Transformada de Laplace

57 La transformada inversa de Laplace de: es

58 es la solución de la ec. diferencial: De modo que:

59 Para conseguirlo hemos aplicado: Primero, que la TL y su inversa son lineales: etc... Y segundo, la TF de las derivadas de una función son:

60 A este método se le conoce como cálculo de Heaviside. Por ejemplo: Y antitransformando obtendremos la solución.

61 Veamos un ejemplo concreto: Resolver la ec. diferencial

62 62 Ejemplo Resolver

63 63 Ejemplo: Resolver

64 64 7. Transformada de Laplace de la integral de una función Si existe la TL de f(t) cuando Re(s) > p 0, entonces: para Re(s) > p.

65 65 Ejercicio: Obtener la transformada de Laplace de la función: Respuesta.

66 66

67 67 8. Transformada de Laplace de f(t)/t

68 68 Calcula la transformada de Laplace de

69 69 Ejemplo: 9. TF de f(t)cos(at) y f(t)sen(at)

70 Teorema del valor final Si existe, entonces: 11. Teorema del valor inicial El valor inicial f(0) de la función f(t) cuya transformada de Laplace es F(s), es:

71 71 Recordemos que la operación se conoce como la convolución de y y se denota como La transformada de Laplace de esta operación está dada por: 12. Integral de convolución

72 72 Si trabajamos con funciones que son cero para para t < 0, entonces la convolución queda: Así que para estas funciones podemos definirla convolución como:

73 73 De hecho, podemos utilizar la convolución para encontrar transformadas inversas de Laplace:

74 74 Ejemplo: Verificar que funciona para f(t) = t y g(t) = e -2t con valores 0 para t < 0.

75 75 Ejercicio: Obtener, mediante el método operacional de Laplace, la solución del problema de Cauchy: Respuesta.

76 76 Transformada de la ecuación:

77 77

78 78 Resolver la ec.integro-diferencial:

79 79 Antitransformando:

80 80 Ejercicio: Obtener, mediante el método operacional de Laplace, la solución del problema de Cauchy Respuesta.

81 81

82 82

83 83 Raíces del denominador D(s) o polos de F(s): Caso I – Polos reales simples Caso II – Polos reales múltiples Caso III – Polos complejos conjugados Caso IV – Polos complejos conjugados múltiples Desarrollo en fracciones parciales: Se utiliza para facilitar el cálculo de la transformada inversa, descomponiendo la función en componentes más sencillos.

84 84 Caso I – Polos reales simples Ejemplo

85 85

86 86 método alternativo y resolver...

87 87 La transformada inversa de Laplace es:

88 88 Otro ejemplo Transformada inversa de Laplace:

89 89 Caso II – Polos reales múltiples Ejemplo Polos reales simples Polos reales múltiples

90 90

91 91 Transformada inversa de Laplace:

92 92 En general, para polos reales múltiples:

93 93 Caso III – Polos complejos conjugados ejemplo conjugados complejos Transformada inversa de Laplace:

94 94 ejemplo Transformada inversa de Laplace: donde

95 95 Se trata de repetir los métodos usados en los casos II y III, teniendo en cuenta que trabajamos con complejos. Caso IV – factores complejos conjugados múltiples

96 96 Ejemplo: Obtener la solución del problema de valores iniciales siguiente, mediante el método operacional de Laplace.

97 97

98 98 Ejercicio: Obtener la transformada de Laplace de la función


Descargar ppt "1 La transformada de Laplace. 2 Pierre-Simon Laplace (1749 - 1827) "Podemos mirar el estado presente del universo como el efecto del pasado y la causa."

Presentaciones similares


Anuncios Google