La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

ESCUELA POLITÉCNICA DEL EJÉRCITO DEPARTAMENTO DE ELÉCTRICA Y ELECTRÓNICA 1 JORGE EDUARDO PASPUEL CHIRIBOGA DANIEL VINICIO RAMOS BOONE 2012.

Presentaciones similares


Presentación del tema: "ESCUELA POLITÉCNICA DEL EJÉRCITO DEPARTAMENTO DE ELÉCTRICA Y ELECTRÓNICA 1 JORGE EDUARDO PASPUEL CHIRIBOGA DANIEL VINICIO RAMOS BOONE 2012."— Transcripción de la presentación:

1 ESCUELA POLITÉCNICA DEL EJÉRCITO DEPARTAMENTO DE ELÉCTRICA Y ELECTRÓNICA 1 JORGE EDUARDO PASPUEL CHIRIBOGA DANIEL VINICIO RAMOS BOONE 2012

2 CONTENIDO OBJETIVOS IMPORTANCIA Y JUSTIFICACIÓN INTRODUCCIÓN TÉCNICAS DE COMPRESIÓN ESTRUCTURA DEL PROGRAMA ANÁLISIS DE RESULTADOS CONCLUSIONES Y RECOMENDACIONES 2

3 OBJETIVOS 3

4 OBJETIVO GENERAL Diseñar e implementar un sistema de compresión de señales ECG mediante el uso de la tarjeta DSP TIGER SHARC ADZS-TS201S. 4

5 OBJETIVOS ESPECÍFICOS Elaborar un análisis comparativo entre la forma de onda de la señal recuperada y la forma de onda de la original. Demostrar que el algoritmo a utilizar cumpla con una tasa de compresión (CR) suficientemente válida cuyo uso sea beneficioso como aplicación en los campos de la Cardiología y/o cualquier ámbito de investigación. 5

6 IMPORTANCIA Y JUSTIFICACIÓN 6

7 IMPORTANCIA Su utilidad para el diagnóstico y corrección de distintas patologías. Es un procedimiento barato y no invasivo. Se emplea en almacenamiento o transmisión. 7

8 JUSTIFICACIÓN Este proyecto de tesis va enfocado al desarrollo y aplicación de tecnología biomédica, específicamente al estudio de la compresión de señales bioeléctricas producidas por el corazón del ser humano. 8

9 INTRODUCCIÓN 9

10 En el cuerpo del ser humano abundan señales bioeléctricas, que llevan información de los sistemas biológicos, con las que se puede determinar el estado de salud de una persona o la existencia de una patología. El electrocardiograma es una de estas señales, conocidas también como señales ECG, que muestran la actividad eléctrica del corazón y la medida de biopotenciales. 10

11 INTRODUCCIÓN El estudio del sistema cardiovascular ha contribuido bastante en los avances efectuados en diagnósticos médicos y es considerado como una excelente técnica al no ser invasiva. La práctica de señales ECG de larga duración se ha desarrollado para la investigación. Los registros digitalizados de ECG suelen utilizarse usualmente en aplicaciones tales como monitorización o en bases de datos de pacientes. 11

12 INTRODUCCIÓN Los DSPS presentan una serie de ventajas que se convierten en apropiados para el desarrollo de la compresión. Son procesadores orientados netamente al tratamiento digital de señales Admiten operaciones típicas de procesado digital en pocos ciclos de reloj. Programación por software que permite la flexibilidad necesaria para la implementación. 12

13 INTRODUCCIÓN POTENCIALES BIOELÉCTRICOS Se da por medio de un transductor apto para convertir corrientes y potenciales iónicos en corrientes y potenciales eléctricos. La ubicación de los electrodos es indispensable, ya que para medir los biopotenciales se necesita del reflejo que producen un gran número de potenciales activos sobre la superficie del cuerpo. 13

14 INTRODUCCIÓN DESCRIPCIÓN DE SEÑALES ECG El electrocardiograma (ECG) es la señal resultante de la contracción de los músculos del corazón que describe su actividad eléctrica, es decir es una representación gráfica en el tiempo de la variedad de voltajes procedentes del miocardio. 14

15 INTRODUCCIÓN SEGMENTOS Y ONDAS DEL ELECTROCARDIOGRAMA 15

16 INTRODUCCIÓN AMPLITUDES Y DURACIONES DE SEÑALES ECG NORMALES Amplitud Onda P0.25mV Onda R1.60mV Onda Q25% de la onda R Onda T0.1 a 0.5mV Duración Intervalo P-R0.12 a 0.20S Intervalo Q-T0.35 a 0.44S Segmento S-T0.05 a 0.15S Intervalo de onda P0.11S Intervalo QRS0.09S 16

17 INTRODUCCIÓN DERIVACIONES PARA ADQUISICIÓN DE SEÑALES ECG PolaridadDerivaciónUbicación de Electrodos Bipolar D1Brazo IzquierdoBrazo Derecho D2Pierna IzquierdaBrazo Derecho D3Pierna IzquierdaBrazo Izquierdo Unipolar de Miembro aVRVector Brazo Derecho aVLVector Brazo Izquierdo aVFVector Pie Izquierdo Unipolar Precordial V14 to espacio intercostal derecho junto al borde esternal V24 to espacio intercostal izquierdo junto al borde esternal V3Punto equidistante entre V2 y V4 V45 to espacio intercostal izquierdo nivel de línea medio-vascular V55 to espacio intercostal izquierdo nivel de línea axilar anterior V65 to espacio intercostal izquierdo nivel de línea axilar media 17

18 TÉCNICAS DE COMPRESIÓN 18

19 TÉCNICAS DE COMPRESIÓN Algoritmos de comprensión sin pérdidas. Alta complejidad. Baja compresión. Algoritmos de comprensión con pérdidas Mayor compresión. Información relevante Métodos directos Métodos transformados Método por extracción de parámetros 19

20 TÉCNICAS DE COMPRESIÓN Algoritmos de comprensión sin pérdidas. Codifiación Huffman. Familia LZ78 Familia LZ77 Métodos directos Polinomios predictores AZTEC TP CORTÉS FAN/SAPA SAIES 20 Métodos transformados Transformada de Fourier Transformada Rápida de Fourier (FFT) Transformada Discreta del Coseno (DCT) Transformada Wavelet Discreta DWT

21 TÉCNICAS DE COMPRESIÓN Se requiere un algoritmo de compresión con péridas para comparar la señal original con la recuperada. PRD ERROR CUADRÁTICO MEDIO 21

22 TÉCNICAS DE COMPRESIÓN 22

23 TÉCNICAS DE COMPRESIÓN 23

24 TÉCNICAS DE COMPRESIÓN 24

25 TÉCNICAS DE COMPRESIÓN DESCRIPCIÓN DE BANCO DE FILTROS Es un arreglo formado por más de un filtro pasa banda que separa la señal de entrada en otros componentes, cada uno de los cuales transporta la subbanda de una sola frecuencia de la señal original. 25

26 TÉCNICAS DE COMPRESIÓN DESCRIPCIÓN DE BANCO DE FILTROS 26

27 TÉCNICAS DE COMPRESIÓN DESCRIPCIÓN DE BANCO DE FILTROS Con la finalidad de cuantificar las señales subbanda, se han aplicado bancos de filtros de distintas maneras en vista que la energía de un ECG no se distribuye uniformemente dentro del dominio espectral. 27

28 TÉCNICAS DE COMPRESIÓN DESCRIPCIÓN DE BANCO DE FILTROS El banco de filtro utilizado es de M canales, el mismo que es diezmado cada 16 datos. Este esquema se usa en aplicaciones de descomposición subbanda para codificación, almacenamiento y/o transmisión de señales. 28

29 TÉCNICAS DE COMPRESIÓN DESCRIPCIÓN DE BANCO DE FILTROS Banco de filtros de M canales de diezmado máximo. 29

30 TÉCNICAS DE COMPRESIÓN DESCRIPCIÓN DE BANCO DE FILTROS CMFB Banco de filtros de análisis Separar las componentes de frecuencia en cada banda. Banco de filtros de síntesis Toman los datos recuperados tratados y se colocan en una matriz semejante a la matriz del diezmado del filtro análisis. 30

31 ESTUDIO Y DISEÑO DE UNA TÉCNICA PARA LA COMPRESIÓN DE SEÑALES ECG APLICACIÓN DE LOS BANCOS DE FILTROS Codificación de Voz Procesamiento de Señales e Imágenes Procesamiento adaptativo de Señales Compresión de Voz, Señales e imágenes Scrambling (Cifrado para DVDs) Transmisión de señales del mismo canal 31

32 ESTRUCTURA DEL PROGRAMA 32

33 DIAGRAMA DE BLOQUES 33

34 PROGRAMA DE ENLACE Programa de Enlace Función Análisis Función Síntesis Carga de Variables 34

35 APLICACIÓN DEL FILTRO ANÁLISIS EN LOS DATOS ECG Muestras ECG Muestras Filtradas en cada uno de los 16 Canales Filtro Análisis 35

36 APLICACIÓN DEL FILTRO ANÁLISIS EN LOS DATOS ECG 36

37 APLICACIÓN DEL FILTRO ANÁLISIS EN LOS DATOS ECG Cada uno de los datos de la muestra pasa a través de los 16 canales. Este proceso se desarrolla a través de la acumulación de condiciones iniciales y finales. Por último los valores filtrados retornan para continuar el proceso. 37

38 DIEZMADO Y DATOS CONCATENADOS 38 Datos Filtrados Componentes de frecuencia de los datos por cada canal. Diezmado De cada 16 datos tomo uno como válido Los 15 restantes les asigno cero. Concatenados Por cada canal tengo 64 datos válidos. Los datos de todos los canales forman 1024

39 39 DIEZMADO Y DATOS CONCATENADOS

40 CÁLCULO DEL ÉPSILON 40

41 CÁLCULO DEL ÉPSILON Luego se ordenó el valor absoluto del ECG concatenado en forma descendente. De esta forma se va calculando la energía, en el momento en el que la energía Retenida sea mayor a la calculada, se acaba de encontrar la posición del épsilon, que es una antes al ese acontecimiento. 41 Energía Retenida Energía Calculada

42 CÁLCULO DEL ÉPSILON 42

43 DATOS SIGNIFICATIVOS En los datos significativos se excluye todos los valores que esten por debajo del epsilon al compararlos con el ECG concatenado De igual forma estos datos se cuentan para conocer la cantidad de datos que se tiene y al mismo tiempo se almacenan las posiciones. 43

44 REALIZACIÓN DEL MAPA Se van a tomar en orden 8 datos binarios para pasarlos a decimales. La selección se hace en orden. De esta forma en vez de tener un vector de 1024 muestras, se llega a tener un vector de

45 CUANTIZACIÓN 45

46 46 CUANTIZACIÓN

47 DATOS A TRANSMITIR Los datos a ser envidos: Mapa ECG cuantizado Número de datos significativos 47

48 RECUPERACIÓN DE MAPA 128 datos del mapa recibido. Cambio de decimal a binario. Ejemplo 48 Valor potrauxpotValor potenciado en la posición /

49 49 DECUANTIZACIÓN

50 RECUPERACIÓN DE DATOS SIGNIFICATIVOS ECG Recuperado 0, ,23 -0,04 0 0,26 0 0,54 Mapa recuperado ECG decuantizado 0,92 -0,23 -0,04 0,26 0,54 0,72 0,92 0,53 50

51 RECUPERACIÓN DE DATOS SIGNIFICATIVOS Distribución de los datos en sus posiciones una matriz 51

52 RECUPERACIÓN DE DATOS SIGNIFICATIVOS Luego al tener los 64 datos, distribuidos en 16 subbandas, se va a poner un dato válido acompañado de 15 ceros. De esa forma se recupera la matriz diezmada. 52

53 RECUPERACIÓN POR EL FILTRO SÍNTESIS se aplica el mismo principio del filtro síntesis, con la diferencia de que en este caso las componentes recuperadas ya están en cada canal. Al igual que en el filtro de análisis, se confirma la pérdida de 192 datos debido a la longitud del filtro 53

54 APLICACIÓN DEL FILTRO SÍNTESIS EN LA MATRIZ RECUPERADA 54

55 Cada uno de los datos divididos en bandas pasa a través de su correspondiente canal. Este proceso se desarrolla a través de la acumulación de condiciones iniciales y finales. Por último los valores filtrados retornan para continuar el proceso. 55 RECUPERACIÓN POR EL FILTRO SÍNTESIS

56 ECG RECUPERADO Se suman todos los valores de los canales por cada fila. Se obtiene el vector de datos recuperado. Se recortan las primeras 192 muestras que no obtuvo el filtro. Se calcula el PRD para comparar con el asumido. 56

57 ESTRUCTURA DEL PROGRAMA Programa de enlace Su función es llamar a todas las librerías y variables necesarias para empezar a receptar la señal del ECG así como la de los filtros de análisis y síntesis. 57

58 ESTRUCTURA DEL PROGRAMA FILTRO ANÁLISIS La aplicación de análisis consiste en armar el filtro tanto en filas y columnas, donde tendremos 16 subbandas o canales del banco de filtro y una longitud de la respuesta impulsiva de los filtros de

59 ESTRUCTURA DEL PROGRAMA DIEZMADO y CONCATENACIÓN Se extraen los valores más significativos del arreglo. Complementa el cálculo del épsilon donde se determinará el valor mínimo de la Energía que debe tener una variable para recuperar la señal original. 59

60 ESTRUCTURA DEL PROGRAMA UMBRALIZACIÓN Se compara el valor absoluto del ECG diezmado con el épsilon calculado de tal manera que se obtengan los valores más significativos en el ECG concatenado. 60

61 ESTRUCTURA DEL PROGRAMA CUANTIZACIÓN Una vez que se obtiene el ECG significativo, se realiza la cuantización de éste para que en conjunto con el mapa, la cantidad de datos significativos y el ECG cuantizado como tal, sean enviados y transmitidos. 61

62 ESTRUCTURA DEL PROGRAMA RECUPERACIÓN Se usa el mapa donde se indicaban las posiciones de los valores más significativos acompañado de la decuantización del ECG cuantizado. 62

63 ESTRUCTURA DEL PROGRAMA FILTRADO Se recuperan los datos significativos y por medio del Filtro Síntesis en Matriz Subbanda, se logra ubicar tanto en filas como columnas para así conseguir el ECG recuperado. Sin embargo, hay que considerar que se genera una pérdida de datos por este proceso. 63

64 ESTRUCTURA DEL PROGRAMA FILTRADO Se recuperan los datos significativos y por medio del Filtro Síntesis en Matriz Subbanda, se logra ubicar tanto en filas como columnas para así conseguir el ECG recuperado. Sin embargo, hay que considerar que se genera una pérdida de datos por este proceso. 64

65 DESCRIPCIÓN DE LA TARJETA DSP La tarjeta ADZS-TS201S tiene incorporado un procesador Tiger SHARC de doble núcleo con una velocidad de reloj de 600 MHz. Las aplicaciones que puede tener el procesador son: Video e imágenes. Ultrasonido, rayos x Vigilancia por medio de video. Escaneo de códigos de barras. Pantallas móviles en vehículos. 65

66 DESCRIPCIÓN DE LA TARJETA DSP Comunicación: Algoritmos extensos, que necesitan ser procesados en tiempo real y requieren ser exactos, ya que las señales no pueden ser susceptibles de pérdida o error; por ejemplo: oEstaciones base celulares 3G. oEstaciones base wireless de banda ancha. oRastreo de activos, autos, personas. oFiltros y análisis de señales. oManejo de algoritmos de telecomunicaciones como transformadas, predictores, etc 66

67 DESCRIPCIÓN DEL SOFTWARE EMPLEADO POR LA TARJETA Visual DSP es la herramienta empleada para escribir el lenguaje de programación de la tarjeta. Facilita la programación del DSP a través de un conjunto de instrucciones extremadamente flexibles y una arquitectura DSP con un lenguaje en un alto nivel amigable. 67

68 ANÁLISIS Y RESULTADOS 68

69 ANÁLISIS POR MEDIO DE LOS BANCOS DE DATOS DE SEÑALES ECG DISPONIBLES PARA INVESTIGACIÓN Para la adquisición de información acerca de las señales ECG, se acudió a la base de datos de PHYSIONET. 69

70 CORRIDA DEL PROGRAMA Las interfaces empleadas en el desarrollo del programa son Visual DSP y Matlab, con la primera se obtuvieron resultados en la tarjeta que fueron comparados con los resultados que arrojaron la segunda interfaz de programación. 70

71 BASES DE DATOS DE PHYSIONET NSRDB (Normal Sinus Rhythm Database) MTI. Señal ECG normal. Muestra AFDB (Atrial Fibrillation Database) MIT. Fibrilación de la aurícula. Muestra CUDB (Ventricular Tachyarrhythmia Database) Creighton. Taquiarritmia ventricular. Muestra cu04. 71

72 BASES DE DATOS Las bases de datos tres archivos: Encabezado.hea Anotaciones.atr Muestra en el tiempo.dat Por medio de estos archivos se va a cambiar de unidades RAW a físicas por medio de las librerías de physionet. 72

73 GRÁFICO DE LA MUESTRA NSRDB 73

74 74 GRÁFICO DE LA MUESTRA AFDB

75 75 GRÁFICO DE LA MUESTRA CUDB

76 FILTRADO Y DIEZMADO - MUESTRA NSRDB 76

77 FILTRADO Y DIEZMADO - MUESTRA AFDB 77

78 FILTRADO Y DIEZMADO - MUESTRA CUDB 78

79 RELACIÓN DE DATOS SIGNIFICATIVOS Y CUANTIZADOS NSRDB 79

80 RELACIÓN DE DATOS SIGNIFICATIVOS Y CUANTIZADOS AFDB 80

81 RELACIÓN DE DATOS SIGNIFICATIVOS Y CUANTIZADOS CUDB 81

82 FILTRADO EN SÍNTESIS – MUESTRA NSRDB 82

83 FILTRADO EN SÍNTESIS – AFDB 83

84 FILTRADO EN SÍNTESIS - CUDB 84

85 TIEMPO DE OBTENCIÓN DE LAS 1024 MUESTRAS DE LA SEÑAL Base de datos Tiempo en 1024 muestras CUDB 4,096 s AFDB 4,096 s NSRDB8 s 85

86 TIEMPO DE PROCESAMIENTO DEL PROGRAMA EN MATLAB Tiempo Tiger Sharck (s) Tiempo Matlab (s) Relación (s) NSRDB1,6214,7722,94 AFDB1,6174,6182,86 CUDB1,5894,5972,89 86

87 TASA DE COMPRESIÓN 87

88 EJEMPLO 88

89 ANÁLISIS DE SEÑALES ORIGINALES Y RECUPERADAS REVISIÓN DE TODAS LAS BASES DE DATOS TRATADAS 89

90 NSRDB CON PRD DEL 5% CR 2,

91 NSRDB CON PRD DEL 10% CR 3,

92 NSRDB CON PRD DEL 15% CR 4,

93 AFDB CON PRD DEL 5% CR 4,

94 AFDB CON PRD DEL 10% CR 6,

95 AFDB CON PRD DEL 15% CR 7,68 95

96 CUDB CON PRD DEL 5% CR 7,31 96

97 CUDB CON PRD DEL 10% CR 8,35 97

98 CUDB CON PRD DEL 15% CR 8,98 98

99 ANÁLISIS DEL PRD 99

100 COMPARACIÓN DE SEÑALES MuestraNSRDB – PRD 5%10%15% Energía Retenida 18, , ,7837 Energía Total 18,1931 Epsilon 0,02120,04200,0713 # de datos significativos PRD calculado 0,10910,21830,2078 CR 2,75273,71914,

101 COMPARACIÓN DE SEÑALES MuestraAFDB PRD 5%10%15% Energía Retenida 1,98431,96941,9445 Energía Total 1,9893 Epsilon 0,00590,02030,0389 # de datos significativos PRD calculado 0,11430,23580,2956 CR 4,46516,64947,68 101

102 COMPARACIÓN DE SEÑALES MuestraCUDB – cu04 PRD 5%10%15% Energía Retenida 8,84718,78058,6697 Energía Total 8,8692 Epsilon 0,03630,07370,1167 # de datos significativos PRD calculado 0,12570,08250,1474 CR 7,31438,34788,

103 COMPARACIÓN DEL PRD 103

104 COMPARACIÓN CON OTRAS TÉCNICAS 104

105 COMPARACIÓN CON TÉCNICAS QUE TIENEN EL PRD = 5% Método TP, con un PRD del 5,3 % a una tasa de compresión de 2 Método WP wavelet packets, con un PRD de 5,92 y una tasa de compresión 10,62 y en resolución 12 bits La transformada DWT (LP) con un PRD de 5,3% y una tasa de compresión de 11,6 y una resolución de 12 bits. Los métodos BF y MP con un PRD del 7% llegan a alcanzar una tasa de compresión de 5,7 y 12,2 respectivamente. PRD en la muestra NSRDB, se obtiene una compresión de 2,75 PRD en la muestra AFDB una compresión de 4,47 PRD en la muestra CUDB 7,31, 105

106 COMPARACIÓN CON TÉCNICAS QUE TIENEN EL PRD = 10% El método DWT (LP) con un PRD del 10,07% alcanza una compresión de 16,76 El método NN, que con un PRD de 10% llega a obtener una tasa de compresión de 8 PRD en la muestra NSRDB, se obtiene una compresión de 3,72 PRD en la muestra AFDB una compresión de 6,65 PRD en la muestra CUDB 8,35 106

107 COMPARACIÓN CON TÉCNICAS QUE TIENEN EL PRD = 15% El método de compresión DWT umbral, tiene un PRD de 13,13% se obtiene una tasa de compresión de 21,42;. PRD en la muestra NSRDB, se obtiene una compresión de 4,51 PRD en la muestra AFDB una compresión de 7,68 PRD en la muestra CUDB 8,98 A parte de las tasas de compresión, hay que determinar el costo de procesamiento que ejercen los métodos de compresión y ver si son soluciones viables para que puedan garantizar esos márgenes de compresión. 107

108 CONCLUSIONES 108

109 CONCLUSIONES En este esquema de filtrado, siempre se van a perder los últimos datos y siempre esta cantidad de datos va a corresponder a la longitud del filtro predictor, en el caso del análisis y la síntesis efectuada en este trabajo, se pierden 192 datos, que corresponden a la longitud del filtro, ya que los últimos datos, no tienen los 192 datos futuros para generar las condiciones iniciales y finales, razón por la cual se generan datos erróneos. 109

110 CONCLUSIONES En el cálculo del épsilon cuando aumenta el PRD la energía retenida disminuye, ya que es inversamente proporcional al PRD, al igual que la cantidad de datos significativos. En el cálculo del épsilon cuando aumenta el PRD, el propio épsilon y la tasa de compresión aumentan. 110

111 CONCLUSIONES Al aumentar la tasa de compresión, se produce una disminución de la resolución en la recuperación de datos; es decir la señal recuperada no sigue la línea de tendencia de la señal original con una aproximación poco aceptable conforme la tasa de compresión vaya en incremento. 111

112 CONCLUSIONES Las señales de personas con una enfermedad en el corazón cambian en tanto en amplitud como en frecuencia y forma de onda; el programa está listo para funcionar ante esas dificultades y se pudo constatar en las señales CUDB y AFDB. 112

113 CONCLUSIONES Hay mejores métodos que CMFB, como DWT y WP en lo que respecta a obtención de resultados y tasas de compresión, pero serían totalmente mejores, si es que el costo de procesamiento que ejercen los mismos fuera un poco mejor que el que se emplea en CMFB. 113

114 CONCLUSIONES Los tiempos de procesamiento del DSP son mucho más rápidos que los empleados por matlab, ya que la arquitectura del DSP es distinta a la de una computadora y además la tarjeta está dedicada a operaciones con datos, en cambio la computadora ejerce muchas más operaciones que el DSP. 114

115 RECOMENDACIONES 115

116 RECOMENDACIONES Los archivos de las señales vienen en formato RAW, razón por la cual hay que hacer una operación para transformarlos en un formato físicamente real, que en este caso está representado en mili-voltios, para simplificar esta operación, se puede descargar el WFDB toolbox, por medio del cual se puede hacer el análisis de una base de datos de physionet. 116

117 RECOMENDACIONES Al descargarse una base de datos de Physionet, es indispensable observar con detenimiento, cuantas señales tienen y de qué tipo de señal para tratarlas de acuerdo a su problema o inconveniente. 117

118 RECOMENDACIONES Si se obtiene una muestra de toda la base de datos descargada de physionet, para no perder los datos correspondientes a la longitud del filtro al momento pasarlos a través del mismo, es necesario incluir a parte de la muestra, la cantidad de datos que le siguen a esa muestra en semejante número a la longitud del filtro, de esa manera no se van a perder los datos requeridos y voy a tener la oportunidad de analizar toda la muestra; a menos que esté trabajando con toda la base de datos, de esa forma si se van a perder la cantidad de datos correspondientes a la longitud del filtro. 118

119 RECOMENDACIONES Se recomienda trabajar con un PRD del 5%, ya que es donde se genera la mejor recuperación y donde se genera mayor estabilidad en los resultados, pero no necesariamente la mejor tasa de compresión. Para trabajar con un muy buen grado de precisión con el DSP es necesario trabajar con la tarjeta en punto flotante, que me va a determinar una buena precisión en decimales; cualidad que no me garantiza el trabajo en punto fijo. 119

120 RECOMENDACIONES Mientras se tome el tiempo que demora el programa de matlab en correr, no se debe de hacer nada más en la computadora, ya que el procesador se sobrecarga de tareas y la medida del tiempo no va a ser la real. Hay que leer bien el archivo de encabezado de physionet, para cerciorarse de la frecuencia de operación de la señal, tiempo total de la muestra, cantidad de señales y varias anotaciones importantes. 120

121 RECOMENDACIONES Los archivos de las señales vienen en formato RAW, razón por la cual hay que hacer una operación para transformarlos en un formato físicamente real, que en este caso está representado en mili-voltios, para simplificar esta operación, se puede descargar el WFDB toolbox, por medio del cual se puede hacer el análisis de una base de datos de physionet. Al descargarse una base de datos de physionet, es indispensable observar con detenimiento, cuantas señales tienen y de qué tipo de señal para tratarlas de acuerdo a su problema o inconveniente. 121


Descargar ppt "ESCUELA POLITÉCNICA DEL EJÉRCITO DEPARTAMENTO DE ELÉCTRICA Y ELECTRÓNICA 1 JORGE EDUARDO PASPUEL CHIRIBOGA DANIEL VINICIO RAMOS BOONE 2012."

Presentaciones similares


Anuncios Google