La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Trabajo Trabajo Presentación PowerPoint de Joaquín E Borrero V, Profesor de Física Colegio Comfamiliar Atlántico Presentación PowerPoint de Joaquín E.

Presentaciones similares


Presentación del tema: "Trabajo Trabajo Presentación PowerPoint de Joaquín E Borrero V, Profesor de Física Colegio Comfamiliar Atlántico Presentación PowerPoint de Joaquín E."— Transcripción de la presentación:

1

2 Trabajo Trabajo Presentación PowerPoint de Joaquín E Borrero V, Profesor de Física Colegio Comfamiliar Atlántico Presentación PowerPoint de Joaquín E Borrero V, Profesor de Física Colegio Comfamiliar Atlántico © 2011

3 Física y trabajo En este módulo aprenderá una definición mensurable del trabajo como el producto de fuerza y distancia.

4 Objetivos: Después de completar este módulo, deberá: Describir el trabajo en términos de fuerza y desplazamiento, usando la definición del producto escalar.Describir el trabajo en términos de fuerza y desplazamiento, usando la definición del producto escalar. Resolver problemas que involucren el concepto de trabajo.Resolver problemas que involucren el concepto de trabajo. Distinguir entre el trabajo resultante y el trabajo de una sola fuerza.Distinguir entre el trabajo resultante y el trabajo de una sola fuerza. Definir la constante de resorte y calcular el trabajo realizado por una fuerza de resorte variable.Definir la constante de resorte y calcular el trabajo realizado por una fuerza de resorte variable.

5 Tres cosas son necesarias para la realización de trabajo: F F x Debe haber una fuerza aplicada F.Debe haber una fuerza aplicada F. Debe haber un desplazamiento x.Debe haber un desplazamiento x. La fuerza debe tener componente a lo largo del desplazamiento.La fuerza debe tener componente a lo largo del desplazamiento.

6 Si una fuerza no afecta al desplazamiento, no realiza trabajo. F W La fuerza F que ejerce el hombre sobre la maceta realiza trabajo. La Tierra ejerce una fuerza W sobre la maceta, pero no trabajo aun cuando haya desplazamiento.

7 Definición de trabajo El trabajo es una cantidad escalar igual al producto del desplazamiento x y el componente de la fuerza F x en la dirección del desplazamiento. trabajo = componente de fuerza X desplazamiento Trabajo = F x x

8 Trabajo positivo F x La fuerza F contribuye al desplazamiento x. Ejemplo: Si F = 40 N y x = 4 m, entonces Trabajo Trabajo = (40 N)(4 m) = 160 N m Trabajo = 160 J 1 N m = 1 Joule (J)

9 Trabajo negativo f x La fuerza de fricción f se opone al desplazamiento. Ejemplo: Si f = -10 N y x = 4 m, entonces Trabajo = (-10 N)(4 m) = - 40 J Trabajo = - 40 J

10 El trabajo resultante es la suma algebraica de los trabajos individuales de cada fuerza. Ejemplo:F = 40 N, f = -10 N y x = 4 m Ejemplo: F = 40 N, f = -10 N y x = 4 m Trabajo = (40 N)(4 m) + (-10 N)(4 m) Trabajo = 120 J Trabajo resultante o trabajo neto F x f

11 El trabajo resultante también es igual a la fuerza RESULTANTE. Ejemplo: Ejemplo: Trabajo = (F - f) x Trabajo = ( N)(4 m) Trabajo = 120 J 40 N 4 m4 m -10 N Trabajo resultante (Cont.)

12 Trabajo de una fuerza a un ángulo x = 12 m F = 70 N 60 o Trabajo = F x x Trabajo = (F cos ) x Trabajo = (70 N) Cos 60 0 (12 m) = 420 J Trabajo = 420 J ¡Sólo el componente x de la fuerza realiza trabajo!

13 1. Dibuje bosquejo y establezca lo que está dado y lo que se debe encontrar. Procedimiento para calcular trabajo 2. Dibuje diagrama de cuerpo libre y elija el eje x a lo largo del desplazamiento. Trabajo = (F cos ) x +F x n mg 3. Encuentre el trabajo de una sola fuerza a partir de la fórmula. 4. El trabajo resultante es trabajo de la fuerza resultante.

14 Ejemplo 1: Una podadora se empuja una distancia horizontal de 20 m por una fuerza de 200 N dirigida a un ángulo de 30 0 con el suelo. ¿Cuál es el trabajo de esta fuerza? 30 0 x = 20 m F = 200 N Trabajo = (F cos ) x Trabajo = (200 N)(20 m) cos 30 0 Trabajo = 3460 J Nota: El trabajo es positivo pues F x y x están en la misma dirección. F

15 Ejemplo 2: Una fuerza de 40 N jala una bloque de 4 kg una distancia horizontal de 8 m. La cuerda forma un ángulo de 35 0 con el suelo y u k = 0.2. ¿Cuál es el trabajo realizado por cada una que actúa sobre el bloque? 1. Dibuje un bosquejo y encuentre los valores dados 1. Dibuje un bosquejo y encuentre los valores dados. x P P = 40 N; x = 8 m, u k = 0.2; = 35 0 ; m = 4 kg 2. Dibuje diagrama de cuerpo libre que muestre todas las fuerzas. (Cont.) Trabajo = (F cos ) x +x 40 N x n mg 8 m P fkfk

16 Ejemplo 2 (Cont.): Encuentre el trabajo realizado por cada fuerza. +x 40 N x n W = mg 8m8m P fkfk Trabajo = (P cos ) x P = 40 N; x = 8 m, u k = 0.2; = 35 0 ; m = 4 kg 4. Primero encuentre el trabajo de P. Trabajo P = (40 N) cos 35 0 (8 m) = 262 J 5. Considere a continuación la fuerza normal n y el peso W. Cada una forma un ángulo de 90 0 con x, de modo que los trabajos son cero. (cos 90 0 =0): Trabajo P = 0 Trabajo n = 0

17 Ejemplo 2 (Cont.): 6. Luego encuentre el trabajo de la fricción. +x 40 N x n W = mg 8 m P fkfk P = 40 N; x = 8 m, u k = 0.2; = 35 0 ; m = 4 kg Trabajo P = 262 J Trabajo n = Trabajo W = 0 Recuerde: f k = k n n + P cos 35 0 – mg = 0; n = mg – P cos 35 0 n = (4 kg)(9.8 m/s 2 ) – (40 N)sen 35 0 = 16.3 N f k = k n = (0.2)(16.3 N); f k = 3.25 N

18 Ejemplo 2 (Cont.): +x 40 N x n W = mg 8 m P fkfk Trabajo P = 262 J Trabajo n Trabajo n = Trabajo W = 0 6. Trabajo de fricción (Cont.) f k = 3.25 N; x = 8 m Trabajo f = (3.25 N) cos (8 m) = J Nota: El trabajo de fricción es negativo: cos = El trabajo resultante es la suma de todos los trabajos: 262 J – 26 J (Trabajo) R = 236 J

19 Ejemplo 3: ¿Cuál es el trabajo resultante sobre un bloque de 4 kg que se desliza desde lo alto hasta el fondo de un plano inclinado de 30 0 ? (h = 20 m y k = 0.2) Trabajo = (F cos ) x h 30 0 n f mg x Trabajo neto = (trabajos) Encuentre el trabajo de las 3 fuerzas. Encuentre primero la magnitud de x a partir de trigonometría: h x 30 0

20 Ejemplo 3 (Cont.): ¿Cuál es el trabajo resultante sobre el bloque de 4 kg? (h = 20 m y k = 0.2) h 30 0 n f mg x = 40 m 1. Primero encuentre el trabajo de mg. Trabajo = (4 kg)(9.8 m/s 2 )(40 m) cos 60 0 Trabajo = 784 J Trabajo positivo Trabajo = mg(cos ) x 60 0 mg x 2. Dibuje diagrama de cuerpo libre Trabajo realizado por el peso mg mg cos mg cos

21 Ejemplo 3 (Cont.): ¿Cuál es el trabajo resultante sobre el bloque de 4 kg? (h = 20 m y k = 0.2) h 30 0 n f mg r 3. Luego encuentre el trabajo de la fuerza de fricción f que requiere encontrar n. 4. Diagrama de cuerpo libre: nf mg mg cos n = mg cos 30 0 = (4)(9.8)(0.866) n = 33.9 N f = k n f = (0.2)(33.9 N) = 6.79 N

22 Ejemplo 3 (Cont.): ¿Cuál es el trabajo resultante sobre el bloque de 4 kg? (h = 20 m y k = 0.2) 5. Encuentre el trabajo de la fuerza de fricción f usando diagrama de cuerpo libre Trabajo = (6.79 N)(20 m)(cos ) Trabajo = (f cos ) x Trabajo = (272 J)(-1) = -272 J Nota: El trabajo de fricción es negativo. f x ¿Qué trabajo realiza la fuerza normal n ? h 30 0 n f mg r El trabajo de n es 0 pues está en ángulo recto con x.

23 Ejemplo 3 (Cont.): ¿Cuál es el trabajo resultante sobre el bloque de 4 kg? (h = 20 m y k = 0.2) Trabajo neto = (trabajos) Peso: Trabajo = J Fuerza n : Trabajo = 0 J Fricción: Trabajo = J Trabajo resultante = 512 J h 30 0 n f mg r Nota: El trabajo resultante pudo haberse encontrado al multiplicar la fuerza resultante por el desplazamiento neto sobre el plano.

24 Gráfica de fuerza contra desplazamiento Suponga que una fuerza constante F actúa a través de un desplazamiento paralelo x. Fuerza, F Desplazamiento, x F x1x1x1x1 x2x2x2x2 El área bajo la curva es igual al trabajo realizado. Trabajo = F(x 2 - x 1 ) Área Trabajo F x

25 Ejemplo para fuerza constante ¿Qué trabajo realiza una fuerza constante de 40 N que mueve un bloque desde x = 1 m hasta x = 4 m? Trabajo = F(x 2 - x 1 ) 40 N Fuerza, F Desplazamiento, x 1 m 4 m Área Trabajo = (40 N)(4 m - 1 m) Trabajo = 120 J Trabajo = F x

26 Trabajo de una fuerza variable La definición de trabajo sólo se aplica a una fuerza constante o una fuerza promedio. ¿Y si la fuerza varía con el desplazamiento como al estirar un resorte o una banda elástica? F x Fx

27 Ley de Hooke Cuando un resorte se estira, hay una fuerza restauradora que es proporcional al desplazamiento. F = -kx La constante de resorte k es una propiedad del resorte dada por: K = F x F x m

28 Trabajo realizado al estirar un resorte F x m El trabajo realizado SOBRE el resorte es positivo; el trabajo POR el resorte es negativo. De la ley de Hooke: F = kx x F Trabajo = Área del triángulo Área = ½ (base)(altura) = ½ (x)(F prom ) = ½ x(kx) = ½ (x)(F prom ) = ½ x(kx) Trabajo = ½ kx 2

29 Comprimir o estirar un resorte inicialmente en reposo: Dos fuerzas siempre están presentes: la fuerza externa F ext SOBRE el resorte y la fuerza de reacción F s POR el resorte. Compresión: F ext realiza trabajo positivo y F s realiza trabajo negativo (vea la figura). Estiramiento: F ext realiza trabajo positivo y F s realiza trabajo negativo (vea la figura). x m x m Compresión Estiramiento

30 Ejemplo 4: Una masa de 4 kg suspendida de un resorte produce un desplazamiento de 20 cm. ¿Cuál es la constante de resorte? F 20 cm m La fuerza que estira es el peso (W = mg) de la masa de 4 kg: F = (4 kg)(9.8 m/s 2 ) = 39.2 N Ahora, a partir de la ley de Hooke, la constante de fuerza k del resorte es: k = = F x 0.2 m k = 196 N/m

31 Ejemplo 5: ¿Qué trabajo se requiere para estirar este resorte (k = 196 N/m) de x = 0 a x = 30 cm? Trabajo = ½(196 N/m)(0.30 m) 2 Trabajo = 8.82 J F 30 cm Nota: El trabajo para estirar 30 cm adicionales es mayor debido a una mayor fuerza promedio.

32 Caso general para resortes: Si el desplazamiento inicial no es cero, el trabajo realizado está dado por: x1x1 x2x2 F x1x1 m x2x2 m

33 Resumen x xx x F 60 o Trabajo = F x x Trabajo = (F cos ) x El trabajo es una cantidad escalar igual al producto del desplazamiento x y el componente de la fuerza F x en la dirección del desplazamiento.

34 1. Dibuje bosquejo y establezca lo que está dado y lo que se tiene que encontrar. Procedimiento para calcular trabajo 2. Dibuje diagrama de cuerpo libre y elija el eje positivo x a lo largo del desplazamiento. Trabajo = (F cos ) x +F x n mg 3. Encuentre el trabajo de una sola fuerza a partir de la fórmula. 4. El trabajo resultante es trabajo de fuerza resultante.

35 1. Dibuje siempre un diagrama de cuerpo libre y elija el eje positivo x en la misma dirección que el desplazamiento. Puntos importantes para problemas de trabajo: 2. El trabajo es negativo si un componente de la fuerza está en dirección opuesta al desplazamiento. 3. El trabajo realizado por una fuerza que esté en ángulo recto con el desplazamiento será cero (0). 4. Para trabajo resultante, puede sumar los trabajos de cada fuerza o multiplicar la fuerza resultante por el desplazamiento neto.

36 Resumen para resortes F x m Ley de Hooke: F = -kx Constante de resorte: La constante de resorte es la fuerza que se ejerce POR el resorte por cambio unitario en su desplazamiento. La fuerza del resorte siempre se opone al desplazamiento. Esto explica el signo negativo en la ley de Hooke.

37 Resumen (Cont.) x1x1 x2x2 F x1x1 m x2x2 m Trabajo = ½ kx 2 Trabajo para estirar un resorte:

38 Resortes: Trabajo positivo/negativo x m x m + Compresión Estiramiento Siempre están presentes dos fuerzas: la fuerza externa F ext SOBRE el resorte y la fuerza de reacción F s POR el resorte. Compresión: F ext realiza trabajo positivo y F s realiza trabajo negativo (vea la figura). Estiramiento: F ext realiza trabajo positivo y F s realiza trabajo negativo (vea la figura).

39 CONCLUSIÓN: Trabajo


Descargar ppt "Trabajo Trabajo Presentación PowerPoint de Joaquín E Borrero V, Profesor de Física Colegio Comfamiliar Atlántico Presentación PowerPoint de Joaquín E."

Presentaciones similares


Anuncios Google