La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

TEMA 2 MÉTODOS DE ESTIMACIÓN Y GESTIÓN DEL RIESGO Miguel Pérez Venteo Ángel Torralbo Jiménez José Luís Ortega Calero Pablo Sánchez Fernández.

Presentaciones similares


Presentación del tema: "TEMA 2 MÉTODOS DE ESTIMACIÓN Y GESTIÓN DEL RIESGO Miguel Pérez Venteo Ángel Torralbo Jiménez José Luís Ortega Calero Pablo Sánchez Fernández."— Transcripción de la presentación:

1 TEMA 2 MÉTODOS DE ESTIMACIÓN Y GESTIÓN DEL RIESGO Miguel Pérez Venteo Ángel Torralbo Jiménez José Luís Ortega Calero Pablo Sánchez Fernández

2 Introducción Estimación: OBJETIVOS REDUCIR COSTES INCREMENTAR NIVELES DE SERVICIO Y CALIDAD PREDICCIONES SOBRE LOS ACTUALES SOBRE FASES POSTERIOES TOMAR DECISIONES DURANTE LA VIDA DEL PRODUCTO

3 ALGUNAS PREDICCIONES UTILES: Introducción VIABILIDAD REQUISITOS DISEÑO CODIFICACIÓN PRUEBA/ENTREGA MANTENIMIENTO Análisis del coste/beneficio Esfuerzo/planificación/ Predicción de la calidad Potencial de reutilización Estimación del tamaño Tamaño/planificación/ Predicción de la calidad Predicción del esfuerzo de prueba Predicciones de finalización de las pruebas Predicciones de calidad/fiabilidad

4 2. Precisión y exactitud de las estimaciones Precisión, referencia al número de cifras significativas que tiene una medida. Precisión, referencia al número de cifras significativas que tiene una medida. Exactitud, se refiere a la cercanía de una medida a su objetivo. Exactitud, se refiere a la cercanía de una medida a su objetivo. Ej.: en la estimación del SW una precisión errónea es el peor enemigo de la exactitud. Ej.: en la estimación del SW una precisión errónea es el peor enemigo de la exactitud.

5 2. Precisión y exactitud de las estimaciones Ejemplo: se desea estimar el tiempo necesario para finalizar un proyecto con un conjunto dado de requisitos y se dispone de datos de tiempo de finalización de un gran número de proyectos con los mismos requisitos. Ejemplo: se desea estimar el tiempo necesario para finalizar un proyecto con un conjunto dado de requisitos y se dispone de datos de tiempo de finalización de un gran número de proyectos con los mismos requisitos.

6 2. Precisión y exactitud de las estimaciones T = función de densidad de probabilidad para el tiempo de finalización. T = función de densidad de probabilidad para el tiempo de finalización. Para un valor de tiempo concreto el área bajo la curva sería cero. Para un valor de tiempo concreto el área bajo la curva sería cero. Una estimación se define como la mediana de la distribución. Una estimación se define como la mediana de la distribución. Valor mas probable = mediana. Valor mas probable = mediana. Limites sup e inf = intervalos de confianza. Limites sup e inf = intervalos de confianza.

7 2. Precisión y exactitud de las estimaciones - Evaluación de la exactitud de la estimación: - Evaluación de la exactitud de la estimación: - Error relativo de la estimación: - Error relativo de la estimación: RE = (A-E) / A RE = (A-E) / A - Error relativo medio: RE = (1/n) Sumat. REi. - Error relativo medio: RE = (1/n) Sumat. REi. - Magnitud del error: MRE = valor absoluto de RE. - Magnitud del error: MRE = valor absoluto de RE.

8 2. Precisión y exactitud de las estimaciones - Magnitud media del error relativo: - Magnitud media del error relativo: MRE = (1/n) E MRE MRE = (1/n) E MRE - Calidad de la predicción: PRED(q) = K/n - Calidad de la predicción: PRED(q) = K/n -Factor de Calidad de la estimación: -las estimaciones se realizan repetidamente a lo largo del proyecto a medida que se va obteniendo más información.

9 3. Principios de la estimación. Aplicar la cantidad de recursos correcta. La estimación no puede cambiarse arbitrariamente. Reestimar con frecuencia.

10 4. Estimación de costes Implica la realización de predicciones sobre la cantidad más probable de esfuerzo, tiempo y personal necesarios para realizar una tarea. Se realizan a lo largo de todo el ciclo de vida del proyecto. Estimaciones preliminares: objetivo ver la viabilidad del proyecto. Son las más difíciles de hacer. Se divide el esfuerzo por actividades. Estimaciones más detalladas: cuando ha comenzado el proyecto, para realizar la planificación del mismo. Si es necesario se realizan reestimaciones.

11 4. Estimación de Costes Técnicas de estimación Técnicas de estimación Opinión de expertos: Los expertos hacen sus estimaciones de coste basándose en su experiencia previa. Opinión de expertos: Los expertos hacen sus estimaciones de coste basándose en su experiencia previa. Analogía: Comparan el proyecto con otros anteriores para ver las similitudes y diferencias. Analogía: Comparan el proyecto con otros anteriores para ver las similitudes y diferencias. Descomposición: Análisis centrados en los productos o tareas que se requieren en cada fase o etapa del proyecto. Descomposición: Análisis centrados en los productos o tareas que se requieren en cada fase o etapa del proyecto. Modelos: identifican los factores que contribuyen al esfuerzo y generan una fórmula matemática que relaciones los factores y el esfuerzo. Modelos: identifican los factores que contribuyen al esfuerzo y generan una fórmula matemática que relaciones los factores y el esfuerzo.

12 4. Estimación de Costes Curva de aprendizaje Curva de aprendizaje Es un método que se utiliza para determinar el tiempo que se tardará en empezar a producir y el coste por unidad de salida. Es un método que se utiliza para determinar el tiempo que se tardará en empezar a producir y el coste por unidad de salida. Teoría : los individuos aprenden de la experiencia por repetición de la misma operación un número determinado de veces Teoría : los individuos aprenden de la experiencia por repetición de la misma operación un número determinado de veces El incremento de la eficiencia tiende a estabilizarse con el tiempo. Se puede usar este método para encontrar el esfuerzo requerido para el entrenamiento de los trabajadores durante un periodo de tiempo. El incremento de la eficiencia tiende a estabilizarse con el tiempo. Se puede usar este método para encontrar el esfuerzo requerido para el entrenamiento de los trabajadores durante un periodo de tiempo. En la realidad se aplican dos modelos: En la realidad se aplican dos modelos: - Aprendizaje constante -Aprendizaje acelerado - Aprendizaje constante -Aprendizaje acelerado

13 4. Estimación de Costes Modelo de aprendizaje constante Modelo de aprendizaje constante El incremento de la eficiencia es constante, por tanto el tiempo se reduce linealmente cada vez que se repite una acción. El incremento de la eficiencia es constante, por tanto el tiempo se reduce linealmente cada vez que se repite una acción. Y=b-ax (si c es el tiempo que se requiere para realizar la primera operación) b=c+a EJEMPLO: una empresa se está preparando para introducir una nueva herramienta. -Nº de características : 45 -Tiempo inicial entrenamiento para cada una: 3 minutos -Porcentaje de mejora en cada operación: 5% del tiempo inicial -Número de Operaciones totales : 10 C = 3 * 45 = 135 minutos a = 135 * 0.05 = 6.75 minutos Tiempo total: ( )*10 – (6.75 (10) 2 ) / 2 = 1080 minutos de formación

14 4. Estimación de Costes Modelo de aprendizaje acelerado Modelo de aprendizaje acelerado El incremento de la eficiencia es más rápido al principio, y tiende después a estabilizarse según la expresión El incremento de la eficiencia es más rápido al principio, y tiende después a estabilizarse según la expresión y=ax b Pasando la función de exponencial a lineal queda log y = log a + b(logx) a= tiempo de la primera operación |b|= índice de mejora n=número de operaciones

15 5. Modelos de coste y esfuerzo Modelos de coste: Modelos restrictivos: Estima la duración y esfuerzo del proyecto Estima la duración y esfuerzo del proyecto Se basan en datos empíricos Se basan en datos empíricos Entrada Primaria y factores de ajuste Entrada Primaria y factores de ajuste Modelo COCOMO Modelo COCOMO Relacionan tiempo entre parámetros, duración y nivel del personal Relacionan tiempo entre parámetros, duración y nivel del personal Curva Rayleigh relaciona esfuerzo y tiempo Curva Rayleigh relaciona esfuerzo y tiempo

16 5.1 Modelos de regresión Ecuación Ecuación E = a * S b E = a * S b log E = log a +b*log S

17 5.1 Modelos de regresión Identificar factores de variación Identificar factores de variación Análisis de los factores identificados Análisis de los factores identificados Asignación de un peso a los factores Asignación de un peso a los factores Ecuación del esfuerzo: Ecuación del esfuerzo: Guías de Coste Guías de Coste E = ( a * S b ) * E = ( a * S b ) * Factor de ajuste del esfuerzo F

18 5.2 Modelo de Bailey-Basili Obtención de la ecuación a partir de 18 grandes proyectos: Obtención de la ecuación a partir de 18 grandes proyectos: Metodología (METH)Complejidad acumulada (CPLX)Experiencia acumulada (EXP) Diagramas de árboles Diseño TOP-DOWN Documentación formal Equipos con programador jefe Entrenamiento formal Formalismos de diseño Lectura de código Carpetas de desarrollo de unidad Planes de prueba formales Complejidad de la interfaz de usuario Complejidad de la aplicación Complejidad del flujo de programa Complejidad de comunicación interna Complejidad de la base de datos Complejidad de la comunicación externa Cambios en el diseño solicitados por el usuario Calificación del programador Experiencia del programador con la maquina Experiencia del programador en el lenguaje Experiencia del programador en la aplicación Experiencia del equipo E = * S1.16 Ajuste: a *(METH) + b * (CPLX) + c * (EXP) + d Ajuste: a *(METH) + b * (CPLX) + c * (EXP) + d

19 FIN FIN


Descargar ppt "TEMA 2 MÉTODOS DE ESTIMACIÓN Y GESTIÓN DEL RIESGO Miguel Pérez Venteo Ángel Torralbo Jiménez José Luís Ortega Calero Pablo Sánchez Fernández."

Presentaciones similares


Anuncios Google