La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Página 1 Prof. Iván Rebolledo © 2001 Introducción Profase I 2ª división meiótica Metafase I Anafase I Telofase.

Presentaciones similares


Presentación del tema: "Página 1 Prof. Iván Rebolledo © 2001 Introducción Profase I 2ª división meiótica Metafase I Anafase I Telofase."— Transcripción de la presentación:

1 Página 1 Prof. Iván Rebolledo © Introducción Profase I 2ª división meiótica Metafase I Anafase I Telofase I Espermatogénesis Ovogénesis Aplicaciones clínicas

2 Página 2 Prof. Iván Rebolledo © 2001 Introducción Es un tipo especial de división celular presente en organismos de reproducción sexual, los cuales utilizan células sexuales o gametos, que al fusionarse (fecundación) dan origen a un nuevo organismo. Así la meiosis garantiza que se producirán gametos haploides que al fusionarse producirán un nuevo organismo diploide. Sin meiosis la reproducción sexual sería imposible. Consiste en una replicación del ADN seguida por 2 divisiones celulares consecutivas, con lo cual se logra una reducción a la mitad del número de cromosomas. Así, se originarán 4 células haploides. La fase S premeiótica se prolonga más que la fase S premitótica.

3 Página 3 MITOSISMEIOSIS En células somáticas En células germinales Células hijas son diploidesCélulas hijas son haploides Después de cada replicación del ADN hay una división Después de cada replicación del ADN hay dos divisiones Cada cromosoma con 2 cromátidas es independiente Cada cromosoma con 2 cromátidas se aparea con homólogo Dura 1 a 2 horasVarones dura 64 días, hembras hasta varios años Constancia en material genético (excepto mutaciones) Variabilidad en material genético debido a recombinación Seres reproducción asexualSeres reproducción sexual Diferencias entre Mitosis y Meiosis Prof. Iván Rebolledo © 2001

4 Página 4 La meiosis comprende 2 divisiones celulares : división I y división II. Morfológica- mente la división I se caracteriza por una profase muy larga, durante la cual los cromosomas homólogos se aparean e intercambian material hereditario. Por razones didácticas, los estadios de la meiosis son : Profase I Metafase I Anafase I Telofase I FASES ESTADIOS Profase II Metafase II Anafase II Telofase II Aquí no hay interfase, el ADN no se duplica leptoteno cigoteno paquiteno diploteno ciacinesis Prof. Iván Rebolledo © 2001

5 Página 5 Profase I Período leptonémico (leptoténico) Leptoténico viene de dos palabras griegas : leptos, delgado y nema, filamento; es decir, la cromatina se dispone en filamentos muy finos que llegan a formar asas cuyos extremos se unen a la envoltura nuclear. Con ME se observa que cada cromosoma está compuesto de dos cromátidas. Estos filamentos muestra unos engrosa- mientos dispuestos a intervalos regulares llamados cromómeros. Prof. Iván Rebolledo © 2001

6 Página 6 Período cigonémico (cigoténico) Cigonémico viene de la palabra griega cygon, que significa adjunto. Los cromosomas homólogos se alinean y se aparean, proceso llamado sinapsis, conformando una estructura denominada complejo sinaptonémico, especialmente nítida en relación directa con la envoltura nuclear. El apareamiento es muy exacto y específico, se produce cromómero por cromómero entre los pares homólogos. Cada brazo está conformado por 2 cromátidas hermanas en cada homólogo Prof. Iván Rebolledo © 2001

7 Página 7 Se considera al complejo sinaptonémico como la estructura básica del apareamiento de los cromosomas homólogos meióticos. Es evidente que el alineamiento de las moléculas de ADN debió haber empezado durante el período anterior, pero es en este período en que se hace visible. Aquí se utiliza el término de tétrata para designar el complejo formado por las 4 cromátidas. El final de la sinapsis marca el final del cigonema e inicio del paquinema.. sinapsis Prof. Iván Rebolledo © 2001

8 Página 8 Período paquinémico (paquiténico) El nombre viene de la palabra griega pachus, que significa grueso. Es el período más largo que los anteriores, ya que si el leptonema y cigonema puede durar algunas horas, el paquinema dura días o semanas. En este período, los cromosomas homólogos se mantienen estrechamente unidos y ocurre entre ellos un proceso muy importante: Prof. Iván Rebolledo © 2001

9 Página 9 nucléoloEnvoltura nuclear La recombinación génetica o crossing-over (llamado también entre- cruzamiento). Este proceso consiste en un intercambio de segmentos de cromátidas vecinas de los cromosomas homólogos, intercambio que se efectúa mediante una ruptura y una reunión física del material cromosómico. Prof. Iván Rebolledo © 2001

10 Página 10 Período diplonémico (diploténico) Se inicia la separación de los cromosomas que están en sinapsis, quedando asociadas solo las cromátidas que han experimentado la recombinación genética. Estos puntos específicos se unión se llaman quiasmas. Es el período más largo de la profase, ya que puede durar semanas, meses o años. Micrografía que muestra un bivalente con tres quiasmas (flechas) Prof. Iván Rebolledo © 2001

11 Página 11 Los cromosomas adoptan una configuración especial; cromosomas plumados o en escobilla, debido a que las fibras de cromatina forman asas pareadas unidas a un eje común. Este esqueleto axial contiene ADN con proteínas, siendo inactivo en la transcripción. En la base de las asas existe una condensación formada por ADN y proteínas llamada cromómero. Asociado a las asas de ADN, existe ARN y proteínas, que le proporcionan una variedad de formas al microscopio. Prof. Iván Rebolledo © 2001

12 Página 12 Período diacinema (diacinesis) De griego dia que significa a través, es decir, hilos que se extienden a través del citosol. En este período los cromosomas se preparan para unirse a las fibras del huso. Los cromosomas alcanzan su máxima condensación, los bivalentes llegan a ser cortos y gruesos. Prof. Iván Rebolledo © 2001

13 Página 13 Los quiasmas son evidentes, aunque tienden a desaparecer y los bivalentes individuales llegan a estar relativamente separados. La desaparición de los quiasmas se produce por un deslizamiento a lo largo del cromosoma, proceso llamado terminalización. El diacinema termina con la desaparición de los nucléolos, la degradación de la envoltura nuclear y la movilización de las tétratada hacia la placa metafásica. Prof. Iván Rebolledo © 2001

14 Página 14 METAFASE I Los pares homólogos forman 2 planos ecuatoriales, es decir, ambas cromátidas del par homólogo se encuentran orientados hacia el mismo polo. Los cinetocoros de las cromátidas hermanas están orientados en la misma dirección, así, el plano que pasa por los cinetocoros es perpendicular a las fibras del huso (en mitosis, los cinetocoros de cada par homólogo miran en dirección contraria). Los microtúbulos del mismo polo se unen a cromátidas hermanas. Entonces, ambas cromátidas (diada) de un cromosoma se encuentran unidas a las fibras del huso de un polo determinado. Prof. Iván Rebolledo © 2001

15 Página 15 ANAFASE I Se inicia con la segregación de las diadas (dos cromátidas de un par de cromosomas homólogos) unidas por un par de cinetocoros, hacia los polos. Cada diada contiene 2 cromátidas y cada cromátida corresponde a una molécula de ADN; por consiguiente, en este momento existe una cantidad de ADN igual a la célula original, es decir, aún no se ha logrado la haploidía nucleoproteica. Por otra parte, los cromosomas maternos o paternos se dirigen al azar a cada grupo de diadas. Prof. Iván Rebolledo © 2001

16 Página 16 En ocasiones anormales, puede movilizarse hacia un polo la tétrada completa, este fenómeno se denomina no disyunción y se apellida primaria porque ocurre en la primera división meiótica. El resultado de esta segregación anormal será un cromosoma extra en alguna de las células que terminan la meiosis y, por consiguiente, una célula con deficiencia de un cromosoma. Más detalles en Aplicación clínica, al final Normal No disyunción Gametos con cromosomas normales Gameto con cromosoma extra Gameto con cromosoma de menos Prof. Iván Rebolledo © 2001

17 Página 17 TELOFASE I En muchas especies, incluyendo el hombre, esta etapa es breve y los núcleos pasan directamente a la profase II, o aún, a metafase II. El estadio entre las dos divisiones se llama intercinesis caracterizándose por su corta duración. La envoltura nuclear puede o no reconstruirse. Prof. Iván Rebolledo © 2001

18 Página 18 SEGUNDA DIVISION MEIOTICA La meiosis II es descrita generalmente como una división mitótica, debido a que sus etapas son similares a los eventos convencionales de distribución cromosómica de una mitosis. Así, en la metafase II los cromosomas con dos cromátidas se ubican en un solo plano en el ecuador de la célula. Luego, en la anafase II, se separan las cromátidas migrando hacia cada uno de los polos. Termina con la telofase II cuando las cromátidas (ahora llamadas cromosomas) quedan encerradas por una envoltura nuclear que se ha reorganizado. Los productos de esta segunda división son células haploides tanto en cromosomas como en moléculas de ADN. Prof. Iván Rebolledo © 2001

19 Página 19 Espermatogénesis Es el proceso de formación de los gametos masculinos llamados espermatozoides que ocurre en los tubos seminíferos de los testículos. Cuando nace un niño, sus testículos contienen cordones seminíferos formados por dos tipos celulares : espermatogonias y células de Sertoli. Al llegar la pubertad, las espermatogonias inician un proceso de división mitótica y crecimiento que dará lugar a células grandes denominadas espermatocito I. Esta célula viene recién de un período S de un ciclo celular, por lo tanto, contiene : 46 cromosomas dobles 92 cromátidas 92 moléculas de ADN Prof. Iván Rebolledo © 2001

20 Página 20 Cuando ocurre la primera división meiótica, este espermatocito I se divide en dos células de igual tamaño llamadas espermatocito II. Cada una de ellas contiene : - 23 cromosomas dobles - 46 cromátidas - 46 moléculas de ADN Como se observa, al comparar estas cantidades con una célula normal (46 cromosomas y 46 moléculas de ADN), NO se ha logrado aún la reducción en la carga genética. Seguidamente, estos espermatocitos II se dividen a través de la segunda división meiótica originando dos células de igual tamaño denominadas espermátidas. Cada una de ellas contiene : - 23 cromátidas (cromosomas) - 23 moléculas de ADN Prof. Iván Rebolledo © 2001

21 Página 21 Por último, a través de un proceso de diferenciación celular, estas espermátidas sufren una transformación compleja para convertirse en espermatozoides. Aquí no hay ningún tipo de división celular. Por otro lado, en cada una de las divisiones mencionadas anteriormente, las células quedan unidas por puentes intercelulares, lo que deduce que ocurrió una citocinesis incompleta. Prof. Iván Rebolledo © 2001

22 Página 22 Espermatogénesis cromosomas dobles, 92 cromátidas 92 moléculas de ADN Espermatocito I Meiosis I Espermatocito II 23 cromosomas dobles, 46 cromátidas 46 moléculas de ADN Prof. Iván Rebolledo © 2001

23 Página Meiosis II Espermátidas Diferenciación Esper matozoides 2323 Espermatocito II 23 cromátidas 23 moléculas de ADN Prof. Iván Rebolledo © 2001

24 Página 24 Ovogénesis Es el proceso de formación de los gametos femeninos que ocurre en los ovarios. Cuando nace una niña, sus ovarios ya contienen los ovocitos I (*) detenidos en el período de diacinesis de la profase I. Es decir, que la serie de divisiones mitóticas que llevaron a las ovogonias a producir los ovocitos I se produjo en su etapa fetal. Esta célula viene recién de un período S de un ciclo celular, por lo tanto, contiene : - 46 cromosomas dobles - 92 cromátidas - 92 moléculas de ADN Detenido en Profase I (*) llamados también oocitos Prof. Iván Rebolledo © 2001

25 Página 25 Meiosis I cromosomas dobles, 92 cromátidas 92 moléculas de ADN Ovocito I Ovocito II Detenido en Profase I Primer cuerpo polar Detenido en Metafase II (Se completa durante la ovulación) Al llegar la pubertad, se inician los ciclos menstruales y con ello las ovulaciones. Un poco antes de producirse una ovulación, el ovocito I completa la primera división meiótica convirtiéndose en dos células de distinto tamaño : la más grande se denomina ovocito II y la más pequeña, primer cuerpo polar. El propósito de esta citocinesis desigual es conservar en una célula la mayor cantidad de nutrientes que permita el desarrollo durante sus primeras etapas. El propósito del primer cuerpo polar es eliminar un juego de cromosomas sobrantes. En resumen, la célula ovulada es un ovocito II Prof. Iván Rebolledo © 2001

26 Página 26 Este ovocito II ha avanzado en la segunda división meiótica hasta la metafase II y tiene dos destinos : puede o no puede ser fecundado por un espermatozoide. En caso de no ser fecundado, degenerará al cabo de unas 24 a 36 horas. En el caso de ser fecundado, completa la segunda división meiótica, produciendo dos células de diferente tamaño : la más grande se denomina óvulo y la más pequeña segundo cuerpo polar. (Ver figura de la siguiente página) Meiosis II Ovocito II Ovulo 4646 Primer cuerpo polar (Se completa en fecundación) Segundos cuerpos polares Prof. Iván Rebolledo © 2001

27 Página 27 1er. cuerpo polar Zona pelúcida Núcleo del ovocito II Corona radiada Prof. Iván Rebolledo © 2001

28 Página 28 En el momento en que la membrana de un espermatozoide toca la membrana del ovocito II se completa la segunda división meiótica. Como una forma de impedir que otros espermatozoides penetren al óvulo, se ha detectado un aumento en los niveles de Ca +2 que produce una acumulación de vesículas debajo de la membrana y que al ser exocitadas alteran el espacio extracelular bloqueando la entrada de otros espermatozoides. Otra consecuencia de los elevados niveles de Ca +2 es que activa los sistemas de proteólisis que degradan tanto la ciclina B como el Mos. La inactivación del MPF conduce a la completación de la segunda división meiótica, con una citocinesis asimétrica. La fusión de los pronúcleos femenino y masculino restablece la diploidía. Esta célula se llama cigoto. Prof. Iván Rebolledo © 2001

29 Página 29 Aplicaciones clínicas En el humano, el número normal de cromosomas es de 46 agrupados en 22 pares de autosomas y un par de cromosomas sexuales llamados gonosomas. El contenido de cromosomas de un varón se puede expresar en la siguiente fórmula cariotípica 46,XY y el de una hembra en 46,XX Hay casos en que los cromosomas homólogos no se separan durante la meiosis I ó las cromátidas hermanas no se separan durante la meiosis II. En cualquier caso, los gametos resultantes contendrán un cromosoma extra o uno de menos. Prof. Iván Rebolledo © 2001

30 Página 30 En el caso de ocurrir una no-disyunción en la meiosis I de la espermatogénesis, todos los espermatozoides resultarán anormales, ya que la mitad de ellos contendrán un cromosoma de más y la otra mitad uno de menos. Si ocurre una no-disyunción en la meiosis II, la mitad de los espermatozoides resultarán normales y la otra mitad anormales (n+1 y n-1) En el caso de la ovogénesis, una no-disyunción en la primera o en la segunda división meiótica, resultará siempre un óvulo anormal (n+1 ó n-1). Prof. Iván Rebolledo © 2001

31 Página 31 Meiosis I Meiosis II En el caso de ocurrir una no-disyunción en la meiosis I de la espermatogénesis, todos los espermatozoides resul- tarán anormales, ya que la mitad de ellos contendrán un cromosoma de más y la otra mitad uno de menos. n+1 n-1 Prof. Iván Rebolledo © 2001

32 Página 32 Ahora bien, si uno de esos gametos, por ejemplo el n+1, su fusiona con un gameto normal resultará un cigoto con tres cromosomas de la misma clase, lo cual se denomina una trisomía, que puede ser autosómica o gonosómica, según se trate de 3 cromosomas autosómicos o 3 cromosomas sexuales, respectivamente Gameto normal Gameto anormal Cigoto trisómico Prof. Iván Rebolledo © 2001

33 Página 33 Entre las trisomías autosómicas más frecuentes se pueden mencionar : trisomía 21, conocida como el sindrome de Down, presente en los niños mongólicos. Su fórmula cariotípica puede ser 47,XY+21 ó 47,XX+21, dependiendo si es varón o hembra, respectivamente. trisomía 18, conocida como el sindrome de Edwards, siendo su fórmula 47,XY+18 ó 47,XX+18, si es varón o hembra. trisomía 13, sindrome de Patau, con fórmula 47,XY+13 ó 47,XX+13 si es varón o hembra. Cuando se trata de gonosomas, los casos existentes son : sindrome de Klinefelter : 47,XXY sindrome doble Y : 47,XYY sindrome triple X : 47,XXX Prof. Iván Rebolledo © 2001

34


Descargar ppt "Página 1 Prof. Iván Rebolledo © 2001 Introducción Profase I 2ª división meiótica Metafase I Anafase I Telofase."

Presentaciones similares


Anuncios Google