La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Máquinas asíncronas Jesús Fraile Ardanuy Área de Ingeniería Eléctrica

Presentaciones similares


Presentación del tema: "Máquinas asíncronas Jesús Fraile Ardanuy Área de Ingeniería Eléctrica"— Transcripción de la presentación:

1 Máquinas asíncronas Jesús Fraile Ardanuy Área de Ingeniería Eléctrica
Dpto. de Ingeniería Civil: Hidráulica y Energética. ETSI Caminos, Canales y Puertos Universidad Politécnica de Madrid J.F.A.

2 Introducción Campo giratorio (Teorema Ferraris) 1888 Motores bifásicos
Tesla J.F.A.

3 Introducción (II) Westinghouse compra patente Tesla.
Primeros motores bifásicos comerciales. 1890 Dobrowolsky (AEG) MOTOR ASÍNCRONO TRIFÁSICO. Rotor en JAULA DE ARDILLA. 1893 Doble Jaula de ardilla. J.F.A.

4 Introducción (III) Máquina de INDUCCIÓN Máquina ASÍNCRONA
La corriente que circula por un devanado (el rotor) se debe a la fem inducida por la acción del flujo del otro devanado (estátor) Máquina ASÍNCRONA Gira a una velocidad inferior a la de sincronismo de la red. J.F.A.

5 Introducción (IV) Simple. Robusta. Poco mantenimiento.
80% de los motores son asíncronos. Inconvenientes: Regulación de velocidad. J.F.A.

6 Aspectos Constructivos
J.F.A.

7 Aspectos Constructivos (II)
J.F.A.

8 Aspectos constructivos (III)
ESTATOR: Apilamiento de chapas de acero. Ranuras para los devanados. Devanados desfasados 120º eléctricos. Alimentado por corrientes trifásicas. Se obtiene un: FLUJO GIRATORIO DE AMPLITUD CONSTANTE J.F.A.

9 Aspectos constructivos (IV)
J.F.A.

10 Aspectos Constructivos (V)
ROTOR: Chapas apiladas. JAULA de ARDILLA: Conductores de Aluminio cortocircuitados por los extremos. DEVANADO: Arrollamiento trifásico: Un lado en ESTRELLA. El otro conectado a unos ANILLOS. J.F.A.

11 Aspectos constructivos (VI)
ROTOR: JAULA DE ARDILLA DEVANADO (anillos) J.F.A.

12 Aspectos Constructivos (VII)
CAJA DE BORNES J.F.A.

13 Aspectos constructivos (VIII)
Los devanados del estátor se conectan en: ESTRELLA TRIÁNGULO J.F.A.

14 Aspectos Constructivos (IX)
Conexión ESTRELLA (Mayor tensión) Conexión TRIÁNGULO (Menor tensión) J.F.A.

15 Principio de funcionamiento
3 tensiones corrientes trifásicas (f1) Campo magnético giratorio de amplitud constante. Velocidad de SINCRONISMO J.F.A.

16 Principio de funcionamiento (II)
Generación de un campo magnético giratorio. J.F.A.

17 Principio de funcionamiento (III)
Desarrollando los devanados del estátor: N N N S S S Instante T1 Número de pares de polos, p=3 J.F.A.

18 Principio de funcionamiento (IV)
El flujo giratorio atraviesa las espiras del rotor. Se inducen unas f.e.m.s. Como están cortocircuitados, aparecen corrientes en el rotor que reaccionan con el flujo del estátor. J.F.A.

19 Principio de funcionamiento (V)
Al circular corriente por el rotor → Aparece una fuerza sobre el conductor. J.F.A.

20 Principio de funcionamiento (VI)
La fuerza no actúa sobre los conductores sino sobre los dientes. J.F.A.

21 Principio de funcionamiento (VII)
Si la velocidad se aproxima a n1 Menor es la f.e.m. en el rotor. Menor es la corriente inducida. Menor es la fuerza. Menor es el par motor. ….. La máquina se frena. NUNCA SUPERA LA VELOCIDAD DE SINCRONISMO n1 Si el rotor gira a la velocidad de sincronismo, n1, no habría movimiento relativo del campo magnético giratorio con respecto del rotor y NO SE INDUCIRÍA NINGUNA FEM. J.F.A.

22 Deslizamiento A plena carga: 3-8% J.F.A.

23 Circuito equivalente. Rotor Parado
Se comporta igual que un transformador. DIFERENCIA: La inducción se produce por un campo magnético de amplitud constante y giratorio en el espacio (fem de movimiento) En el trafo, la fem se produce por un campo magnético alternativo fijo en el espacio (fem de transformación) J.F.A.

24 Rotor Parado Similar a un TRANSFORMADOR
Velocidad = 0, deslizamiento, s=1 f.e.m. inducida en el ROTOR f.e.m. inducida en el ESTATOR Similar a un TRANSFORMADOR con el primario en el estátor y el secundario en el rotor. J.F.A.

25 Circuito equivalente. Rotor girando
La frecuencia del rotor depende del deslizamiento, s J.F.A.

26 Rotor girando f.e.m. inducida en el ROTOR
Velocidad del campo giratorio creado por el rotor (mismo número de polos que el estátor) Velocidad del campo giratorio del rotor, referencia externa (n2+n): J.F.A.

27 Rotor girando. F.m.m. J.F.A.


Descargar ppt "Máquinas asíncronas Jesús Fraile Ardanuy Área de Ingeniería Eléctrica"

Presentaciones similares


Anuncios Google