La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Control de la expresión génica

Presentaciones similares


Presentación del tema: "Control de la expresión génica"— Transcripción de la presentación:

1 Control de la expresión génica
Dra. María Isabel Fonseca

2 Expresión génica Se aplica con frecuencia a todo el proceso por el cual la información codificada en un gen particular se descodifica para producir una proteína particular.

3 La regulación en cualquiera de los diversos pasos del proceso de expresión génica podría conducir a una expresión génica diferencial en tipos celulares o etapas del desarrollo diferentes o en respuesta a condiciones externas.

4 En humanos hay 200 tipos celulares distintos
Distintos tipos celulares, distintos momentos… distinto contenido de proteínas En humanos hay 200 tipos celulares distintos – proteínas distintas por célula 22% de los genes están destinados a controlar la expresión génica Diferente expresión según la etapa el ciclo, el desarrollo del individuo y necesidades metabólicas…

5 En propósito más característico y de mayor alcance biológico del control génico en los organismos multicelulares es la ejecución del programa genético que subyace al desarrollo embriológico. La generación de numerosos tipos celulares diferentes que forman en conjunto un organismo multicelular depende de que los genes adecuados se activen en las células adecuadas en el tiempo adecuado durante el periodo de desarrollo

6 Visión global del control génico
PROCARIOTAS

7 La necesidad de regulación
En procariotas la regulación de la síntesis de proteínas tiene lugar principalmente a nivel de la trascripción. En bacterias, el control génico sirve principalmente para permitir que una única célula se ajuste a los cambios en su ambiente de manera que se optimice su crecimiento y división.

8 Pero solo produce las necesarias y en cantidades suficientes
Los procariotas han desarrollado procedimientos que les permiten utilizar al máximo los nutrientes destinados al crecimiento celular Puede sintetizar E. colli 1700 enzimas y prot. dif. Pero solo produce las necesarias y en cantidades suficientes En presencia de lactosa como fuente de carbono fabrican aprox moléculas de beta-galactosidasa. Mientras que en ausencia de lactosa hay una sola molécula de la enzima. Es decir la lactosa INDUCE la producción de la enzima necesaria para degradarla. Por el contrario la presencia de un nutriente determinado puede REPRIMIR (inhibir la transcripción de un grupo de genes.Ej. Triptófano)

9 Modelo del Operón (Jacob y Monod)
Los grupos de genes que codifican proteínas con funciones relacionadas se disponen en unidades conocidas como operones. Un operón comprende el promotor, los genes estructurales y otra secuencia conocida como operador (situado entre el P y los GE). La trascripción de los GE depende de los genes reguladores que codifican para una proteína llamada represor que se une al operador. La capacidad del represor de unirse al operador y asi bloquear la síntesis depende del efector q puede activar o inactivar el represor de ese operón en particular.

10 Operón inducible

11 En procariotas varios genes se controlan juntos

12 Operón represible

13 Operón represible

14 En procariotas podemos encontrar 4 alternativas

15 Visión global del control génico: eucariotas

16 La alteración de cualquiera de los pasos implicados en la expresión génica pueden causar enfermedades como por ejemplo el cáncer.

17 Control Pre-transcripcional y transcripcional en eucariotas

18 Control pre-transcripcional y transcripcional
Accesibilidad del ADN a la transcripción: Condensación de la cromatina Metilacion del ADN Control pre-transcripcional Frecuencia/velocidad de inicio de transcripción Velocidad de elongación del ARN (poco regulada Eficacia de terminación de la trascripción Punto de inicio accesibles Factores de trascripción eficacia de promotores Control de transcripción

19 Control pre-transcripcional Se controla el acceso a las secuencias génicas del DNA
La condensación de la cromatina: acetilación y desacetilación de histonas Regulación epigenética: metilación del ADN TFIID RNApol II TFIIH TFIIB TFIID

20 Control pre-transcripcional Se controla el acceso a las secuencias génicas del DNA
La transcripción no puede tener lugar sobre DNA en estados de condensación superiores a la fibra de 10nm

21 Regulación genética de la transcripción
Factores involucrados Secuencias promotoras (factores cis) Factores proteicos (factores trans) Presentes en el DNA – porción reguladora del gen Reconocen las secuencias promotoras Factores de trascripción – Codificados en otros genes

22 Regulación genética de la transcripción
Promotores: secuencias consenso Promotores: Secuencias consenso

23 Factores de transcripción para cada promotor
Promotor basal TF generales Promotor proximal TF proximales Activador o enhancer Silenciador o silencer Promotor distal TF inducibles

24 3’ 5’ En eucariotas cada gen posee varios promotores Promotor proximal
Promotor basal -30 a -40 pb Promotor proximal -50 a -200 pb Promotores distales Secuencia TATA Inr CAAT GC

25 Modelo general de los elementos de control que regulan la expresión génica en los eucariotas multicelulares y en las levaduras

26 Varios TF reconocen estos promotores

27 Tres polimerasas catalizan la formación de RNA diferentes en los eucariontes

28 Factores de transcripción
Dominio de unión al ADN Dominio de activación que interactúa con otras proteínas para estimular la transcripción a partir de un promotor cercano (Activadores) Dominio de represión (Represores)

29 Los dominios de union al ADN pueden clasificarse en varios tipos estructurales
Por lo general la capacidad de las proteínas de unión al DNA para unirse a secuencias especificas de DNA es resultado de las interacciones no covalentes entre átomos en una helice alfa del dominio de unión al DNA y átomos en los bordes de la base dentro de un surco mayor del DNA. También contribuyen a la unión las interacciones con los átomos de la columna de azucares fosfato y en algunos casos átomos de un surco menor del DNA

30 Los factores proteicos leen el DNA

31 Los factores proteicos poseen motivos para leer el DNA:
Motivo hélice-giro-helice (HTH)

32 Los factores proteicos poseen motivos para leer el DNA:
Motivo homeodominio

33 Los factores proteicos poseen motivos para leer el DNA:
Motivo hélice-bucle-helice (HLH) y cremallea de leucina

34 Los factores proteicos poseen motivos para leer el DNA:
Motivo de zink

35 Los TF pueden actuar de dos maneras
- Regulando el acceso a las secuencias de inicio

36 Los TF pueden actuar de dos maneras
- Colaborando con la estabilidad del complejo de inicio

37 Los TF inducibles pueden activarse de diferentes maneras
- Biosíntesis de la proteína - Unión a un ligando - Fosforilación - Complejo con otra proteína - Desenmascaramiento - Traslado al núcleo

38 Los TF inducibles forman dímeros
Dominio de activación Dominio de unión al DNA

39 Los receptores de hormonas esteroideas: TF

40 Glucocorticoides

41

42 Control post-transcripcional

43 Control pos-transcripcional
Velocidad de procesamiento Maduración alternativa Corte y empalme. Modificaciones Control de procesamiento del ARN Control de transporte del ARN Selección del los RNAs son transportados Transporte activo a través de los poros Control de degradación del RNA Estabilidad del ARNm maduro

44 SPLICING ALTERNATIVO Regulación de la maduración del ARN
Los exones se pueden empalmar de manera alternativa SPLICING ALTERNATIVO

45 Regulación de la maduración del ARN
Los exones se pueden empalmar de manera alternativa

46 EDICIÓN solo se expresa en el hígado y forma parte de VLDL, IDL y LDL
se genera únicamente en el intestino delgado y forma parte de los quilomicrones

47 Se puede regular la vida media de los RNA
Transferrina

48 Diversas proteínas regulan el transporte del mRNA

49 Complejo de iniciación 80S
La traducción se puede controlar por fosforilación de IF GDP eIF-2 GTP eIF-2 GTP eIF-2 Met-tRNAi P Met-tRNAi GDP eIF-2 GDP CBP AUG eIF-4 eIF-3 Ribosoma 40S Complejo de iniciación 80S

50 Controlar la frecuencia de traducción
Ferritina

51

52 Enlaces que se utilizaron en el diseño
Modern Genetic Analysis. Griffiths, Anthony J.F.; Gelbart, William M.; Miller, Jeffrey H.; Lewontin, Richard C. New York: W. H. Freeman & Co.; c1999. Molecular Biology of the Cell. 3rd ed. Alberts, Bruce; Bray, Dennis; Lewis, Julian; Raff, Martin; Roberts, Keith; Watson, James D. New York and London: Garland Publishing; c1994. Molecular Cell Biology. 4th ed. Lodish, Harvey; Berk, Arnold; Zipursky, S. Lawrence; Matsudaira, Paul; Baltimore, David; Darnell, James E. New York: W. H. Freeman & Co.; c1999. Human Molecular Genetics 2. 2nd ed. Strachan, Tom and Read, Andrew P. Oxford, UK: BIOS Scientific Publishers Ltd; 1999. Genomes. 2nd ed. Brown, T. A. Oxford, UK: BIOS Scientific Publishers Ltd; 2002


Descargar ppt "Control de la expresión génica"

Presentaciones similares


Anuncios Google