La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

MEDIDAS DE DISPERSIÓN Pedro Godoy Gómez. Miden qué tanto se dispersan las observaciones alrededor de su media. MEDIDAS DE DISPERSIÓN.

Presentaciones similares


Presentación del tema: "MEDIDAS DE DISPERSIÓN Pedro Godoy Gómez. Miden qué tanto se dispersan las observaciones alrededor de su media. MEDIDAS DE DISPERSIÓN."— Transcripción de la presentación:

1 MEDIDAS DE DISPERSIÓN Pedro Godoy Gómez

2 Miden qué tanto se dispersan las observaciones alrededor de su media. MEDIDAS DE DISPERSIÓN

3 En algunos casos existen conjuntos de datos que tienen la misma media y la misma mediana, pero esto no refleja qué tan dispersos están los elementos de cada conjunto. Ejemplo: Conjunto 1. 80, 90, 100, 110, 120 Conjunto 2. 0, 50, 100, 150, 200 MEDIDAS DE DISPERSIÓN Conjunto 1 Conjunto 2 Observa que para ambos conjuntos la Mediana es igual a 100. También nota que los datos del conjunto 2 están más dispersos con respecto a su media que los datos del conjunto 1.

4 Existen diversas medidas estadísticas de dispersión, pero muchos autores coinciden en que las principales son: Rango Varianza Desviación estándar Coeficiente de variación MEDIDAS DE DISPERSIÓN

5 Mide la amplitud de los valores de la muestra y se calcula por diferencia entre el valor más elevado (Límite superior) y el valor más bajo (Límite inferior). RANGO FÓRMULA Ejemplo 1. Ante la pregunta sobre número de hijos por familia, una muestra de 12 hogares, marcó las siguientes respuestas: 212413 2320 51 Calcula el rango de la variable Solución.

6 Ejemplo 2. Hay dos conjuntos sobre la cantidad de lluvia (mm) en Taipei y Seúl en un año. Calcula el rango en cada una de las ciudades. Solución. Aplicando la fórmula correspondiente tenemos: Taipei Seúl En este caso se puede observar que el rango es el mismo para ambos casos aunque las cantidades sean diferentes.

7

8 Mide la distancia existente entre los valores de la serie y la media. Se calcula como sumatoria de las diferencias al cuadrado entre cada valor y la media, multiplicadas por el número de veces que se ha repetido cada valor. La sumatoria obtenida se divide por el tamaño de la muestra. VARIANZA (Datos no agrupados) FÓRMULA Muestral Poblacional

9 La varianza siempre será mayor que cero. Mientras más se aproxima a cero, más concentrados están los valores de la serie alrededor de la media. Por el contrario, mientras mayor sea la varianza, más dispersos están. Ejemplo 1. Calcula la varianza para los siguientes datos 2 1 2 4 1 3 2 3 2 0 5 1 Solución. Primero es necesario obtener la media. En este caso Ahora aplicamos la fórmula correspondiente

10 Ejemplo 2. A continuación se muestran dos conjuntos de datos obtenidos a partir de un experimento químico que realizaron dos estudiantes distintos. Calcular la varianza. Solución. Primero es necesario obtener la media de cada conjunto de datos. En este caso Estudiante A Estudiante B Ahora aplicamos la fórmula correspondiente

11 Solución (Continuación). Estudiante A Estudiante B

12 También llamada desviación típica, es una medida de dispersión usada en estadística que nos dice cuánto tienden a alejarse los valores puntuales del promedio en una distribución. Específicamente, la desviación estándar es "el promedio de la distancia de cada punto respecto del promedio". Se suele representar por una S o con la letra sigma,σ, según se calcule en una muestra o en la población. Una desviación estándar grande indica que los puntos están lejos de la media, y una desviación pequeña indica que los datos están agrupados cerca de la media. DESVIACIÓN ESTÁNDAR (Datos no agrupados) FÓRMULA Muestral Poblacional

13 Ejemplo 1. Si retomamos el ejemplo 1 que corresponde a la varianza: Calcula la desviación estándar para los siguientes datos 2 1 2 4 1 3 2 3 2 0 5 1 Solución. Una vez que hemos calculado la media y la varianza, sólo resta calcular la raíz cuadrada de la varianza.

14 Ejemplo 2. Considerando nuevamente el segundo ejemplo que estudiaste para calcular la varianza, tenemos: A continuación se muestran dos conjuntos de datos obtenidos a partir de un experimento químico que realizaron dos estudiantes distintos. Calcular la varianza. Solución. Una vez que has calculado la media y la varianza, es necesario calcular la desviación estándar a partir de la obtención de la raíz cuadrada de la varianza. Estudiante A Estudiante B

15

16 Coeficiente de variación Hemos visto que las medidas de centralización y dispersión nos dan información sobre una muestra. Nos podemos preguntar si tiene sentido usar estas magnitudes para comparar dos poblaciones. Por ejemplo, si nos piden comparar la dispersión de los pesos de las poblaciones de elefantes de dos circos diferentes,  nos dará información útil.

17 ¿Pero qué ocurre si lo que comparamos es la altura de unos elefantes con respecto a su peso? Tanto la media como la desviación típica, y , se expresan en las mismas unidades que la variable. Por ejemplo, en la variable altura podemos usar como unidad de longitud el metro y en la variable peso, el kilogramo. Comparar una desviación (con respecto a la media) medida en metros con otra en kilogramos no tiene ningún sentido.

18 El problema no deriva sólo de que una de las medidas sea de longitud y la otra sea de masa. El mismo problema se plantea si medimos cierta cantidad, por ejemplo la masa, de dos poblaciones, pero con distintas unidades. Este es el caso en que comparamos el peso en toneladas de una población de 100 elefantes con el correspondiente en miligramos de una población de 50 hormigas.

19 En los dos primeros casos mencionados anteriormente, el problema viene de la dimensionalidad de las variables, y en el tercero de la diferencia enorme entre las medias de ambas poblaciones. El coeficiente de variación es lo que nos permite evitar estos problemas, pues elimina la dimensionalidad de las variables y tiene en cuenta la proporción existente entre medias y desviación típica. Se define del siguiente modo:

20 Es una medida de dispersión que se utiliza para poder comparar las desviaciones estándar de poblaciones con diferentes medias y se calcula como cociente entre la desviación típica y la media. COEFICIENTE DE VARIACIÓN FÓRMULA Muestral Poblacional

21 Ejemplo 1. En dos cursos los promedios que sacaron sus alumnos fueron 6.1 y 4.3 y las desviaciones estándar respectivas fueron 0.6 y 0.45 respectivamente. ¿En qué curso hay mayor dispersión? Solución Para responder esto, debemos obtener el coeficiente de variación aplicando la fórmula Claramente, el curso A tiene una dispersión menor que el B, pese a presentar una mayor desviación estándar.

22 Ejemplo: Se realiza un experimento para investigar el efecto de una nueva dieta, sobre la ganancia de peso de cachorros durante las primeras semanas de vida. Gran Danés: ganancia media de 30 libras, desv. típica de 10 libras. Chihuahua: ganancia media de 3 libras, desv. típica de 1,5 libras. ¿Qué grupo posee mayor variabilidad?

23 Muestra Homogenea Una muestra se considera homogénea, si la desviación estandar se encuentra entre la quinta y la parte del rango. Si no es así, entonces se considera que la muestra es heterogénea.

24 ¿Es homogénea la siguiente muestra? Sean 4, 6, 8 y 10 Rango = 10 – 4 = 6 Intervalo [ 1,2 ; 1,5] Calculemos , primero debemos calcular el promedio 2,23  Intervalo entonces la muestra es heterogénea

25 Haciendo uso de la tabla, determine si la muestra es homogénea o Heterogénea EdadesFrecuencia 15 – 202 21 – 267 27 – 328 33 – 385 39 – 444

26 Tipificación Se conoce por tipificación al proceso de restar la media y dividir por su desviación típica a una variable X. De este modo se obtiene una nueva variable de media y viación típica, que denominamos variable tipificada.

27 Esta nueva variable carece de unidades y permite hacer comparables dos medidas que en un principio no lo son. Así por ejemplo nos podemos preguntar si un elefante es más grueso que una hormiga determinada, cada uno en relación a su población. También es aplicable al caso en que se quieran comparar individuos semejantes de poblaciones diferentes. Por ejemplo si deseamos comparar el nivel académico de dos estudiantes de diferentes Universidades para la concesión de una beca de estudios, en principio sería injusto concederla directamente al que posea una nota media más elevada, ya que la dificultad para conseguir una buena calificación puede ser mucho mayor en un centro que en el otro, lo que limita las posibilidades de uno de los estudiante y favorece al otro. En este caso, lo más correcto es comparar las calificaciones de ambos estudiantes, pero tipificadas cada una de ellas por las medias y desviaciones típicas respectivas de las notas de los alumnos de cada Universidad

28 Los coefientes de variación sirven para comparar las variabilidades de dos conjuntos de valores (muestras o poblaciones), mientras que si deseamos comparar a dos individuos de cada uno de esos conjuntos, es necesario usar los valores tipificados. Ninguno de ellos posee unidades y es un error frecuente entre estudiantes de bioestadística confundirlos


Descargar ppt "MEDIDAS DE DISPERSIÓN Pedro Godoy Gómez. Miden qué tanto se dispersan las observaciones alrededor de su media. MEDIDAS DE DISPERSIÓN."

Presentaciones similares


Anuncios Google