La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Apuntes Matemáticas 1º ESO

Presentaciones similares


Presentación del tema: "Apuntes Matemáticas 1º ESO"— Transcripción de la presentación:

1 Apuntes Matemáticas 1º ESO
U.D * 1º ESO FUNCIÓN LINEAL 800 600 400 200 x @ Angel Prieto Benito Apuntes Matemáticas 1º ESO

2 Apuntes Matemáticas 1º ESO
U.D * 1º ESO FORMAS DE UNA FUNCIÓN 800 600 400 200 x @ Angel Prieto Benito Apuntes Matemáticas 1º ESO

3 Apuntes Matemáticas 1º ESO
FORMAS DE UNA FUNCIÓN Una función puede venir definida o dada de distintas formas o maneras, debiendo poder reconocerlas y pasarlas de una a otra forma: 1.- Mediante una frase o enunciado Un problemas de álgebra, por ejemplo, que contenga una regla clara. 2.- Mediante una expresión algebraica o fórmula: y=f(x) Es la más eficaz para relacionar los valores de dos magnitudes, x e y. 3.- Por un conjunto de pares de valores (x,y) o Tabla de Valores. Ya hemos visto algunas tablas en apartados anteriores. 4.- Mediante una gráfica. Que es la representación de la función, llevando cada par de valores de la tabla al plano de cooerdenadas cartesianas. @ Angel Prieto Benito Apuntes Matemáticas 1º ESO

4 Apuntes Matemáticas 1º ESO
Ejemplo completo_1 1.- Enunciado: Vamos a una tienda a comprar una bebida refrescante y vemos que está a 2 € el litro. 2.- Formula: Sea x la cantidad que compramos, e y lo que pagamos. y = 2.x 4.- Sea el Gráfico 3.- Sea la Tabla Gasto en € 10 Litros Euros 8 6 4 Cantidad ( en kg ) @ Angel Prieto Benito Apuntes Matemáticas 1º ESO

5 Apuntes Matemáticas 1º ESO
Ejemplo completo_2 1.- En un examen de Ortografía el profesor pone a cada alumno el resultado de dividir 10 entre el número de faltas de ortografía cometidas. 2.- Sea x la cantidad de faltas en el examen, e y la calificación correspondiente de cada alumno. y = 10 / x Nota 10 8 6 4 2 4.- Sea el gráfico 3.- Sea la tabla Nº Faltas Nota ,33 ,5 nº de faltas @ Angel Prieto Benito Apuntes Matemáticas 1º ESO

6 Apuntes Matemáticas 1º ESO
Ejemplo completo_3 1.- Sabemos que el consumo de gasolina de un coche varia aproximadamente en proporción directa al cuadrado de la velocidad. 2.- Sea x la velocidad de un coche, e y el consumo el litros cada 100 km. y = 0, x2 4.- Sea el gráfico 3.- Sea la tabla Gasto en € 15 Km/h l/100 km 12 9 ,40 6 Velocidad (Km/h) ,66 ,66 @ Angel Prieto Benito Apuntes Matemáticas 1º ESO

7 Apuntes Matemáticas 1º ESO
PUNTUALIZACIONES 1.- No todas las funciones se pueden describir con un enunciado que sea lo suficientemente corto y preciso. (Ver el siguiente ejemplo) 2.- Todas las funciones pueden expresarse con fórmulas, pero a veces son muy difíciles de deducir o, aunque sencillas, son muy complejas. 3.- Todas las funciones podemos expresarlas mediante una tabla de valores, donde volcamos los datos de las dos magnitudes, x e y. Ya hemos visto algunas tablas en apartados anteriores. 4.- Todas las funciones podemos representarlas mediante una gráfica. El eje de las x, abscisas, no tiene obligatoriamente que estar a la misma escala que el eje de las y, ordenadas. Un eje puede ir numerado de 1 en 1 y otro eje de 1000 en 1000. Los puntos representados unas veces se unirán formando rectas o curvas, y otras veces no tiene sentido unirlos. @ Angel Prieto Benito Apuntes Matemáticas 1º ESO

8 Apuntes Matemáticas 1º ESO
El gráfico representa la evolución de los litros de bebida en la máquina de una empresa. ¿Cuántos litros tenía la máquina al comenzar la jornada? ¿En qué periodo o periodos no se consumió nada?. ¿Cuál es la máxima capacidad de la máquina?. ¿Qué pasó a las 14 h?. ¿En qué periodo se ha consumido más deprisa?. ¿Cuánto queda al final?. ¿Cuánto se ha consumido en el día? Y Litros de bebida en una máquina 100 80 60 40 20 X Hora del día @ Angel Prieto Benito Apuntes Matemáticas 1º ESO


Descargar ppt "Apuntes Matemáticas 1º ESO"

Presentaciones similares


Anuncios Google