La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Cambios en el movimiento

Presentaciones similares


Presentación del tema: "Cambios en el movimiento"— Transcripción de la presentación:

1 Cambios en el movimiento
FUERZAS Acción que ejerce un cuerpo sobre otro. Interacción entre dos cuerpos Efectos de las fuerzas El cuerpo se pone en movimiento Aumentan o disminuyen la rapidez Cambian la dirección de movimiento Cambios en el movimiento Las fuerzas son magnitudes vectoriales, poseen magnitud, dirección y sentido Se representan mediante vectores (flechas)

2 FUERZA NETA O FUERZA RESULTANTE
Corresponde a la sumatoria de todas las fuerzas que actúan sobre un cuerpo Fuerzas en igual sentido Fuerzas en sentido opuesto Fuerzas perpendiculares

3 Algunas fuerzas Fuerza con la cual el planeta atrae a los cuerpos hacia su centro Peso (P) Fuerza de sustentación, que ejerce una superficie sobre un objeto apoyado en ella. Es perpendicular a la superficie Normal (N) Fuerzas que se aplican a través de cuerdas Tensión (N) Es la fuerza que se opone al movimiento de los cuerpos, se origina por las irregularidades de las superficies en contacto Roce (f)

4 OJO !!!! Diferencias entre masa y peso Instrumentos:

5 1º LEY DE NEWTON (PRINCIPIO DE INERCIA)

6 INERCIA: Tendencia de un cuerpo a continuar en su estado de movimiento
INERCIA: Tendencia de un cuerpo a continuar en su estado de movimiento. Resistencia que presentan los cuerpos a cambiar su estado de movimiento Los cuerpos tienden a seguir haciendo «lo que ya están haciendo» Se resisten a los cambios

7 GALILEO Y LA INERCIA Experimentos: ¿Es necesaria una fuerza para mantener un movimiento? Galileo introduce en concepto de inercia

8 MASA E INERCIA Definición clásica: cantidad de materia de un cuerpo Definición de Newton: Newton relaciono la masa y la inercia. Mientras más masa posee un cuerpo, mayor será su inercia Por lo tanto Newton define la masa como: una medida cuantitiva de la inercia La masa es una magnitud escalar y en MKS se mide en [Kg]

9

10 Las fuerzas siempre actúan de pares
No existe una fuerza aislada 3º Ley de Newton

11 ¿Qué fuerza tiene mayor magnitud?

12 Toda acción da origen a una reacción
3º LEY DE NEWTON (ACCION Y REACCION) Toda acción da origen a una reacción Es imposible aislar una fuerza Actúan de a pares Cuando un objeto A ejerce una fuerza sobre un objeto B, este último reacciona y ejerce una fuerza igual intensidad y dirección pero en sentido contrario sobre A Ambas fuerza son de igual magnitud y dirección, pero tienen sentidos opuestos Actúan sobre cuerpos diferentes Son simultaneas

13

14 Otros ejemplos

15 2º Ley de Newton : Esta ley relaciona: Fuerza Masa Aceleración

16 La aceleración es directamente proporcional a la fuerza
¿Qué relación existe entre la fuerza aplicada y la aceleración producida? (la masa es constante) La aceleración es directamente proporcional a la fuerza

17 La aceleración es inversamente proporcional a la masa
¿Qué relación existe entre la masa de un cuerpo y la aceleración? (cuando la fuerza aplicada es constante) La aceleración es inversamente proporcional a la masa

18 En conclusión, la segunda ley de Newton plantea que:
“La aceleración que adquiere un cuerpo es directamente proporcional a la fuerza aplicada e inversamente proporcional a la masa del cuerpo” MAGNITUD SIMBOLO UNIDAD DE MEDIDA masa m [Kg] aceleración a [m/s2] Fuerza neta ΣF [Kg∙m/s2]  Newton [N]

19 EJEMPLOS: 1.- El cuerpo de la figura tiene una masa de 2 Kg. Según esto determina: Fuerza neta Aceleración 2.- Determina la aceleración del carro

20 3. - Un balde de 5 Kg de masa se eleva con una aceleración de 3 m/s2
3.- Un balde de 5 Kg de masa se eleva con una aceleración de 3 m/s2. Determina la tensión del cable 4.- Si el balde desciende con la misma aceleración; determina la tensión del cable

21 4.- La figura muestra dos bloques unidos mediante una cuerda, los cuales reciben una fuerza de magnitud 20 N Determina la aceleración del sistema Determina la tensión de la cuerda que une ambos bloques

22 5.- De una cuerda que pasa a través de una polea cuelgan dos cuerpos de masas m1:9 Kg y m2=3 Kg; Calcular: a) la aceleración de los cuerpos b) la tensión de la cuerda

23 EJERCICIOS: ¿Qué fuerza se debe aplicar a una masa de 15 Kg para que adquiera una aceleración de 6 m/s2? R: 90 N A una masa de 4 Kg se le aplica una fuerza de 80 N. ¿Qué aceleración adquiere? R: 20 m/s2 ¿Cuál es la masa de un cuerpo, que al aplicarle una fuerza de 30 N adquiere una aceleración de 6 m/s2? Determina la aceleración del carro de masa 2 Kg en los siguientes casos: El carro de la figura tiene una aceleración de 3 m/s2. Determina su masa

24 Para la situación mostrada en la figura calcula aceleración del sistema y la tensión de la cuerda que une ambos bloques Dos bloques están en contacto como se muestra en la figura. Se aplica una fuerza de 3 N. Si m1= 2 Kg y m2= 4 Kg. Determina La aceleración del sistema La fuerza que el bloque 2 ejerce sobre el bloque 1 Se eleva un balde de 2 Kg con una aceleración de 4 m/s2. Determina la tensión de la cuerda

25 FUERZA DE ROCE Fuerza que se opone al movimiento y que, por lo tanto, lo dificulta Surge por las irregularidades que presentan los cuerpos en contacto

26 Fuerza de roce (f) Roce estático (fe) Roce cinético (fk)
Actúa cuando el cuerpo está en reposo y se trata de moverlo No es constante, su magnitud aumenta junto con la fuerza aplicada, hasta alcanzar un valor máximo: fuerza de roce estático máxima fe Actúa cuando el cuerpo ya se está moviendo Su magnitud es constante y depende de las fuerzas que se ejercen las superficies en contacto y la naturaleza de estas

27 Tabla de coeficientes de roce:

28 EJEMPLO 1 El carro de la figura se mueve en una superficie cuyo μk= 0,3. Según lo anterior, determina la aceleración del carro

29 EJEMPLO 2 Un bloque de masa 4 Kg experimenta una aceleración de 3 m/s2 cuando se le aplica una fuerza de 20 N sobre una superficie horizontal con roce Determina el valor de la fuerza neta sobre el bloque ¿Cuál es el valor de la fuerza de roce? ¿Cuál es el valor del coeficiente de roce cinético?

30 EJEMPLO 3 El carro de la figura, tiene una aceleración de 2 m/s2, hacia la derecha: Determina el valor del coeficiente de roce cinético μk

31 EJERCICIOS 1.- El carro de la figura se mueve en una superficie cuyo μk= 0,2 . Según lo anterior, determina la aceleración del carro 2.- El carro de la figura se mueve en una superficie cuyo μk= 0,4 Según lo anterior, determina la aceleración del carro 3.- Determina el valor del coeficiente de roce cinético, si el tiene una aceleración de 4 m/s2 a la derecha


Descargar ppt "Cambios en el movimiento"

Presentaciones similares


Anuncios Google