La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Caracterización y Modelización de Sistemas Dinámicos no Lineales. Medidas de Desorden Dinámico y Self-Correlation Juan A. Hernández Alvarez, Rosa Mª Benito,Juan.

Presentaciones similares


Presentación del tema: "Caracterización y Modelización de Sistemas Dinámicos no Lineales. Medidas de Desorden Dinámico y Self-Correlation Juan A. Hernández Alvarez, Rosa Mª Benito,Juan."— Transcripción de la presentación:

1 Caracterización y Modelización de Sistemas Dinámicos no Lineales. Medidas de Desorden Dinámico y Self-Correlation Juan A. Hernández Alvarez, Rosa Mª Benito,Juan C. Losada Grupo de Sistemas Complejos ETSI, Agrónomos Universidad Politécnica de Madrid 3 de Junio de 2011. FisEs 2011. Barcelona

2 Objetivo Introducir una nueva metodología para la caracterización y modelización de sistemas dinámicos basado en la medida de dos características: Desorden dinámico. Self-Correlation.

3 Indice METODOLOGIA Desorden dinámico. Self-correlation. Modelización de series temporales. RESULTADOS Caracterización de un sistema caótico. Modelización del tráfico telefónico intercambiado entre redes de telefonía. COMPARATIVA CON OTRAS MEDIDAS Exponente de Lyapunov. Información Mutua.

4 Desorden dinámico

5 Representación de una serie escalar en el espacio de estados x(t)=x(1),x(2),x(3),...,x(n)

6 Producto escalar promediado en todo el espacio de estados

7 Orden dinámico “Orden Dinámico”: capacidad de una serie temporal para fluir de forma suave a través de un espacio de estados. “Producto escalar promedio”: indicador que cuantifica dicho “orden dinámico”.

8 Self-Correlation

9 Confinamiento diagonal de series periódicas

10 Producto perpendicular promedio

11 Self-Correlation Self-Correlation: Capacidad de una serie temporal para moverse de forma paralela a la diagonal de un espacio de estados. Producto perpendicular: Indicador que mide dicha capacidad para moverse en diagonal.

12 Series periódicas y pseudo- periódicas

13 Modelización de series

14 Espectro de correlación de una serie

15 Criterio de equilibrio Para cada valor de k

16 Modelo

17 Caracterización de un sistema caótico RESULTADOS

18 Sistema bidimensional acoplado

19 Detección de orden/desorden ORDEN DESORDEN

20 Cálculo de periodos en zonas ordenadas T=14 Espectro de correlación en zonas de alto orden dinámico

21 Detección de periodos y pseudo- periodos (zona ordenada)

22 Espectro de correlación de una serie caótica

23 Modelización del tráfico telefónico intercambiado entre redes de telefonía. RESULTADOS

24 Tráfico telefónico intercambiado entre operadores de telefonía.

25 Pseudo-periodo T=7 a) Tráfico Nacional b)Tráfico Internacional

26 Modelización de tráfico nacional con taus=7, 14, 21, 28, 35

27 Modelización de tráfico internacional con taus=7, 14, 21, 28, 35

28 Comparativa con otras medidas Exponente de Lyapunov Información Mutua

29 Exponente de Lyapunov e Información Mutua. El producto perpendicular promedio captura información relevante, que en muchos casos no es detectada por la “Información Mutua”. El producto escalar promedio introduce un nivel adicional de refinamiento sobre el exponente de Lyapunov.

30 Referencia principal Hernández, J.A., Benito, R. M. and Losada, J. C. [2011] “Dynamical Disorder & Self-correlation in the characterization of nonlinear systems. Application to deterministic chaos”. Int. J. Bifurcation and Chaos, Vol. 21, 963-983.

31 PREGUNTAS

32 Anexos Exponente de Lyapunov Información Mutua

33 Producto escalar promedio vs exponente de Lyapunov Producto escalar promedio introduce un nivel adicional de refinamiento sobre el exponente de Lyapunov

34 Producto perpendicular promedio vs Información mutua Se detecta claramente comportamiento pseudo-periódico donde I.M. no detecta nada


Descargar ppt "Caracterización y Modelización de Sistemas Dinámicos no Lineales. Medidas de Desorden Dinámico y Self-Correlation Juan A. Hernández Alvarez, Rosa Mª Benito,Juan."

Presentaciones similares


Anuncios Google