Descargar la presentación
La descarga está en progreso. Por favor, espere
1
Aspectos trofodinámicos de la ecología
3
Cadenas alimentarias y dinámica trófica
La cantidad de energía que se transfiere entre los niveles sucesivos de una cadena alimentaria es, en promedio, el 10%
4
Producción secundaria
La producción primaria es relativamente fácil de medir. La producción secundaria, sin embargo, es más difícil de estimar debido a tiempos generacionales más largos, distribución discontinua de las poblaciones, abundancias poblacionales menores.
5
Producción secundaria
A través de la obtención de datos de campo sobre la abundancia de zooplancton y peces. A través de la obtención de datos experimentales sobre la energética del zooplancton y peces. Utilizando estimados de producción primaria y conocimientos sobre trofodinámica: ---estimaciones indirectas: conociendo cuanta energía puede ser transferida entre cada nivel trófico.
6
Eficiencia ecológica Eficiencia con la que la energía puede ser transferida entre niveles tróficos sucesivos. Cantidad de energía que se extrae de un nivel trófico λ0 dividida entre la energía que entra al nivel trófico λ1 Difícil de medir –puede ser estimada a través del uso de las eficiencias de transferencia
7
Eficiencia de transferencia
Et = Eficiencia de transferencia Pt = productividad del nivel trófico λt Pt-1 = productividad del nivel trófico λt-1 Et = Pt/Pt-1 * No todos los organismos se transfieren… Algunos mueren por otras causas distinitas a la depredación (y entran al ciclo del detritus)
8
Eficiencia de transferencia
~20% del fitoplancton a los herbivoros 10-15% en niveles sucesivos La pérdida de energía entre los niveles tróficos llega a ser del 85 al 90%, principalmente debida a la respiración
9
How many trophic levels?
ranges from 2 to 6 levels less in coastal and/or upwelling areas more in open ocean (oligotrophic areas) number of trophic levels is dependent on the size of phytoplankton phytos tend to be large in upwelling regions (WHY?) and small in open ocean areas (WHY?)
11
Estimating Secondary Productivity
Once the trophic structure is known, secondary production can be estimated: P(n+1) = P1En P is productivity at the (n+1)th trophic level n is number of trophic transfers (trophic levels minus one) P1 is annual primary production E is ecological efficiency
12
Weaknesses E is very sensitive: by doubling E, secondary production can increase 10-fold food chain versus food web - trophic transfer is not as simple as equations imply
13
AQUÍ VAMOS Productivity
Productivity refers to biological activity/interaction in the environment Measuring productivity numbers or biomass often measured as gC/m2/yr oceanic average productivity = 100 gC/m2/yr rates of growth (or excretion, grazing, sinking, etc.) organism interactions with the environment and/or each other
14
Consumer - Food Interactions
15
Productivity Productivity = growth rate - loss rate
For primary productivity growth rate varies with light, nutrients, and temperature loss rate includes respiration, grazing, sinking, and death For secondary productivity growth rate varies with ingestion of food loss rate includes respiration, egestion, excretion, and death
16
Grazing responsible for most of phytoplankton loss
other loss mechanisms are not really a factor unless grazing does not occur grazing can have no impact, prevent a bloom, or terminate a bloom (depending on timing) 90% of carbon and energy is lost at each step of trophic pyramid material loss due to respiration, DOC, and POC DOC and POC utilized by microbial loop, detritivores, etc.
17
Global Patterns of Productivity
Fish production.
22
Measuring Secondary Productivity
in some cases, primary production may not be a good indicator of production at higher trophic levels eutrophic systems (PP>>grazing) HABs/selective grazing in such cases, excess primary production may enter the microbial-detritus circuit
23
Top-down Estimates relying solely on fisheries statistics to “fill in the blanks” for lower trophic levels can lead to underestimates omission of production of competing, unharvested species
24
Zooplankton Productivity
defined as total amount of new production within a time frame, regardless of whether all individuals survive through the whole time frame B = Xw B = biomass, X = number of individuals, w = average weight of an individual
25
Zooplankton Productivity
Pt = (X1-X2)((w1+w2)/2) + (B2 - B1) Pt = production between time intervals t1 and t2 B2 - B1 refers to increase in biomass the remainder of the equation refers to biomass produced, but lost, during the time interval
26
Zooplankton Productivity
ideally, one would study a single cohort of a population over time cohort = one identifiable generation of progeny of a species practically impossible to do cannot follow and sample same water mass long enough to get meaningful results
27
Zooplankton Productivity
cohort studies focus on following changes in relative numbers and weights of distinctive life stages of abundant species (copepods)
29
Zooplankton Productivity
productivity may change over time zooplankton stages grow at different rates rates vary over the course of a year in temperate regions, growth will be greatest in the spring when food is plentiful and zooplankton are young productivity may be negative in the winter as individuals utilize food reserves rather than eating
30
Experimental Biological Oceanography
laboratory-scale experiments enclosed ecosystem experiments computer simulations
31
Laboratory-scale Experiments
individual organisms in small volumes of water food requirements transfer efficiencies mainly herbivorous copepods (and phytos)
32
Laboratory-scale Experiments
G = R - E - U - T G = Growth R = ration of ingested food E = egested fecal material U = excretory products (e.g., urea and ammonia) T = respiration
33
Laboratory-scale Experiments
excretory products (U) are usually negligible, so equation is often simplified to AR = T + G A = proportion of food actually utilized A = (R - E)/R
34
Assimilation Rates assimilation rates are highest for carnivores (80 - >90%), lower for herbivores ( %), and lowest for detritivores (<40%) WHY?
35
Feeding Rate Estimates
a known number of zooplankton (1-10s) and a known concentration of food (phytoplankton) are put into a culturing container (kept in the dark - WHY?) and the zooplankton are allowed to feed food particle concentrations are remeasured at a later time to determine grazing rates
36
Estimating Ingestion (R)
grazing rates are related to food concentrations Michaelis-Menton kinetics R = Rmax(1 - e -kp) k = grazing constant p = prey density
37
µmax grazing rate ½ µmax Ko Kn food concentration
38
species B dominates species A dominates grazing rate [phytoplankton]
39
Estimating Respiration
T = respiration rate can be determined in closed-bottle experiments related to temperature and size of individual
40
Estimating Egestion (E)
fecal matter produced copepods produce fecal pellets collect them, count them, and weigh them!
41
Estimating Growth Growth (G) can be determined once R, E, A, and T are known Once G is known, growth efficiency can be estimated: gross: K1 = G/R x 100% net: K2 = G/AR x 100%
42
Growth Efficiency temperature and food concentration will affect growth efficiency efficiency changes with age net growth efficiency for zooplankton generally vary between % terrestrial animals vary between 2 - 5%
43
Growth Efficiency growth efficiency estimations allow us to determine the food required to produce certain animals at different trophic levels still laboratory-based
Presentaciones similares
© 2025 SlidePlayer.es Inc.
All rights reserved.