Descargar la presentación
La descarga está en progreso. Por favor, espere
1
Razón y proporción numérica
Magnitudes directamente proporcionales Regla de tres simple directa Magnitudes inversamente proporcionales Regla de tres simple inversa Problemas de porcentajes
2
Razón entre dos números a y b es el cociente
Razón y proporción numérica La razón entre los números 10 y 2 es 5, su cociente: La razón entre 0,15 y 0,3 es Razón entre dos números a y b es el cociente Los números 2, 5 y 8, 20 forman una proporción, pues sus razones son iguales. Es decir: Los números a, b y c, d forman una proporción si la razón entre a y b es la misma que entre c y d. Es decir: Se lee “a es a b como c es a d” A a y d se les llama extremos. ad = bc A b y c se les llama medios. El producto de los extremos es igual al producto de los medios.
3
Sacos: Kilos: Ejemplo:
Magnitudes directamente proporcionales (I) Ejemplo: Un saco de patatas pesa 20 kilogramos. ¿Cuánto pesan 2 sacos? Un cargamento de patatas pesa 520 kg. ¿Cuántos sacos se podrán hacer? Observa: Sacos: 1 saco 2 sacos 3 sacos ? sacos ? Fíjate: Kilos: 20 kg 40 kg 60 kg 520 kg ? ? Habrás advertido que: Las magnitudes número de sacos y peso en kilogramos son directamente proporcionales. La constante de proporcionalidad para pasar de sacos a kilogramos es 20. En general, si dos magnitudes son tales que a doble, triple… cantidad de la primera corresponde doble, triple… de la segunda, entonces se dice que esas magnitudes son directamente proporcionales. Recuerda: El producto de los extremos es igual al producto de los medios.
4
Ejercicio Dólares: Euros:
Magnitudes directamente proporcionales (II) Ejercicio Si un dólar vale 0,95 euros, ¿cuánto costarán 6 dólares? ¿Cuántos dólares podremos comprar con 20 euros? Las magnitudes dólares y euros son directamente proporcionales, luego: En definitiva: Dólares: 1 2 3 Euros: 0,95 2 · 0,95 = 1,9 3 · 0,95 = 2,85 (dólares) · 0,95 = euros. Por tanto, 6 dólares cuestan 6 · 0,95 = 5,7 euros Para pasar de dólares a euros se multiplica por 0,95. Para pasar de euros a dólares se divide por 0,95 Por lo mismo, 20 euros = 0,95 · (x dólares), luego x = 20 : 0,95 = 21,05 20 euros = 21,05 dólares Recuerda: El producto de los extremos es igual al producto de los medios.
5
La proporción establecida es:
Regla de tres simple directa Ejemplo. En 50 litros de agua de mar hay 1300 g de sal. ¿Cuántos litros de agua de mar contendrán 5200 g de sal? La cantidad de agua y la cantidad de sal son directamente proporcionales. La proporción establecida es: Si representamos por x el número de litros que contendrán 5200 g de sal, se verifica la proporción: 50 · 5200 = 1300 x Disposición práctica En 50 litros hay 1300 g de sal 50 l g En x litros habrá 5200 g de sal x l g Esta forma de plantear y resolver problemas sobre proporciones se conoce con el nombre de regla de tres simple directa.
6
Hombres: Días: Ejemplo:
Magnitudes inversamente proporcionales Ejemplo: Si 3 hombres necesitan 24 días para hacer un trabajo, ¿cuántos días emplearán 18 hombres para realizar el mismo trabajo? Observa: Doble de 3 Triple de 3 Hombres: 3 6 9 18 Fíjate: 3 · 24 = 72 6 · 12 = 72 9 · 8 = 72 18 · 24 = 72 ? Días: 24 12 8 ? Mitad de 24 Un tercio de 24 Si dos magnitudes son tales que a doble, triple… cantidad de la primera corresponde la mitad, la tercera parte… de la segunda, entonces se dice que esas magnitudes son inversamente proporcionales. Pero aún no hemos contestado la pregunta inicial: ¿cuántos días emplearán 18 hombres? Si 18 · = 72, entonces = 72 : 18 = 4 días ?
7
Regla de tres simple inversa
Ejemplo. Un ganadero tiene pienso suficiente para alimentar 220 vacas durante 45 días. ¿Cuántos días podrá alimentar con la misma cantidad de pienso a 450 vacas? Fíjate en que, con el mismo pienso, si el número de vacas se duplica, tendrá para la mitad de días; y si las vacas se triplican, para un tercio de los días, etc. Por tanto, las magnitudes número de vacas y número de días son inversamente proporcionales. Vacas: 220 450 220 · 45 = 450 · x x = 22 Días: 45 x Disposición práctica 220 vacas tienen para 45 días 220 vacas días 450 vacas tendrán para x días 450 vacas x días Esta forma de plantear y resolver problemas sobre magnitudes inversamente proporcionales se conoce con el nombre de regla de tres simple directa.
8
Un descuento del 20% quiere decir que de cada 100 euros pagamos 80.
Problemas de porcentajes (I) Ejemplo1. En las rebajas de enero el descuento de una tienda es del 20% sobre el precio indicado. Un señor compra un juego de toallas etiquetado con 90 euros. ¿Cuánto tiene que pagar? Un descuento del 20% quiere decir que de cada 100 euros pagamos 80. Aplicando la regla de tres, se tiene: Si de 100 euros pagamos 80 De euros pagaremos x x Tendrá que pagar 72 euros por el juego de toallas. En la práctica Un descuento del 20% equivale a multiplicar por 0,20. La cantidad resultante es lo rebajado. Rebaja: 90 · 0,20 = 18. Se paga: 90 – 18 = 72 euros Directamente. Si descuentan el 20%, se pagará el 80%. Se pagarán 90 · 0,80 = 72 euros
9
Aplicando la regla de tres simple se tiene:
Problemas de porcentajes (II) Ejemplo 2. Una señorita compra un coche cuyo precio de fábrica es de 8200 euros. A este precio hay que añadirle un16% de IVA (impuesto sobre el valor añadido). ¿Cuál será el precio final del coche? Si el impuesto es del 16%, quiere decir que por cada 100 euros debemos pagar 116. Aplicando la regla de tres simple se tiene: Si por 100 euros pagamos 116 Por euros pagaremos x x Por tanto, tendrá que pagar 9512 euros por el coche. En la práctica Un incremento del 16% equivale a multiplicar por 0,16. La cantidad resultante es el incremento total. Incremento: 8200 · 0,16 = 1312. Se paga: = 9512 euros Directamente. Si se incrementa el 16%, se pagará el 116%. Se pagarán 8200 · 1,16 = 9512 euros
Presentaciones similares
© 2025 SlidePlayer.es Inc.
All rights reserved.