Descargar la presentación
La descarga está en progreso. Por favor, espere
Publicada porSilvestre Urbano Modificado hace 10 años
1
1-Comprender el principio de inducción completa.
2-Aplicar este principio a la demostración de propiedades en el conjunto de los números naturales.
2
Todo conjunto no vacío de números naturales tiene un elemento mínimo.
Todo número natural (n) tiene exactamente un sucesor (n+1) .
3
2) Si k A, entonces k+1 A Teorema: .
Sea A un conjunto de números naturales que posee las siguientes propiedades: 1) 0 A 2) Si k A, entonces k+1 A Entonces A contiene todos los números naturales, es decir, A= N
4
Partimos de casos particulares y hacemos una generalización.
INDUCCIÓN Partimos de casos particulares y hacemos una generalización. Empírica o incompleta Completa o matemática . DEDUCCIÓN A partir de una generalización inferimos entonces lo que ocurre para casos particulares.
5
Principio de Inducción Completa
La proposición Para todo número natural n se cumple H(n) es verdadera si se cumple: . 1) H(n) es verdadera para n=0 2) De la validez de H(n) para n=k se deduce, siempre, la validez para n=k+1 , donde k representa un número natural cualquiera.
Presentaciones similares
© 2025 SlidePlayer.es Inc.
All rights reserved.