La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Universidad de La Frontera Fac. Ing. Cs. y Adm. Dpto. Cs. Químicas

Presentaciones similares


Presentación del tema: "Universidad de La Frontera Fac. Ing. Cs. y Adm. Dpto. Cs. Químicas"— Transcripción de la presentación:

1 Universidad de La Frontera Fac. Ing. Cs. y Adm. Dpto. Cs. Químicas
Termoquímica: Flujo de energía y cambio químico Prof. Josefina Canales

2 Un sistema químico y sus alrededores
McGraw-Hill, Universidades / Stephen Frisch, fotógrafo

3 Energía eléctrica diaria 1 tonelada de TNT que explota
que cae sobre la tierra Energía solar diaria terremoto fuerte Energía de un de salida de la presa Hoover Energía eléctrica diaria se queman de carbón que 1000 toneladas 1 tonelada de TNT que explota energía eléctrica 1 kilowatt hora de de glucosa combustión de un mol Calor liberado de la 1 caloría (4.184 J) átomo 235 U Energía de la fisión de un división de una célula bacterial Calor absorbido durante la una molécula de aire a 300 K Energía cinética promedio de Algunas cantidades interesantes de energía

4 Primera ley de la termodinámica
( Ley de la conservación de la energía ) “La energía total del universo es constante” Universo = ESistema EAlrededores = 0

5 Cambio en la entalpía = H
La entalpía se define como la energía interna del sistema mas el producto de su presión y su volumen. H = E + PV Para un cambio en la entalpía: H = E PV Para reacciones exotérmicas y endotérmicas: H = H final - H inicial = H productos - H reactivos Exotérmica : H final H inicial H Endotérmica : H final H inicial H

6 Diagramos de entalpía para procesos endotérmicos y exotérmicos
CH4 + 2O2 H2O(l) Hinicial Hfinal Entalpía, H Entalpía, H H = Kj Exotérmico Calor que sale H = +40 Kj Endotérmico Calor que entra CO2 + 2H2O H2O(s) Hfinal Hinicial

7 Gases Líquidos Sólidos Sublimación Deposición H0sub Condensación
- H0vap - H0sub Evaporación H0vap Líquidos Congelamiento - H0fus Fusión H0fus Sublimación Deposición Sólidos

8 Dibujo de diagramas de entalpía y determinación del signo de H - I
Problema: En cada uno de los siguientes casos, determine el signo de H y si la reacción es exotérmica o endotérmica, y dibuje un diagrama de entalpía para cada reacción. a) CH4 (g) + 2 O2 (g) CO2 (g) + 2 H2O(g) kJ b) Ba(OH)2 2H2O(s)+ 2 NH4SCN(s) kJ Ba(SCN)2 (ac) + 2 NH3 (g) + 4 H2O(L) Plan: Inspeccionamos cada ecuación para ver si el calor es un producto (exotérmico) o un reactivo (endotérmico) en la reacción. Para reacciones exotérmicas, los reactivos están sobre los productos en el diagrama de entalpía, el inverso aplica para reacciones endotérmicas. La flecha H siempre apunta de los reactivos a los productos. .

9 Dibujo de diagramas de entalpía y Determinación del signo de H - II
Solución: a) El calor está en el lado de los productos, por lo tanto, la reacción es exotérmica y H es negativo. b) El calor está en el lado de los reactivos, por lo tanto, la reacción es endotérmica y H es positivo. CH4 (g) + 2O2 (g) Reactivos H H = kJ exotérmica Productos CO2 (g) + 2H2O(g) Ba(SCN)2 (ac) + 2NH3 (g) + 4 H2O(L) Productos H = +62 kJ endotérmica H . Reactivos Ba(OH)2 2H2O(s) + 2NH4SCN(s)

10 Entalpías especiales en reacciones
Cuando un mol de una sustancia se combina con oxígeno en una reacción de combustión, el calor de la reacción es calor de combustión( Hcomb): C3H8 (g) + 5 O2 (g) CO2 (g) + 4 H2O(g) H = Hcomb Cuando un mol de una sustancia se produce a partir de sus elementos, el calor de la reacción es el calor de formación( Hf ) : H = Hf Ca(s) + Cl2 (g) CaCl2 (s) Cuando un mol de una sustancia se funde, el cambio de entalpía es el calor de fusión ( Hfus) : H2O(s) H2O(L) H = Hfus Cuando un mol de una sustancia se evapora, el cambio de entalpía es el calor de evaporación( Hvap) : H2O(L) H2O(g) H = Hvap

11 Calores de combustión (Hcomb) de algunos compuestos de carbono
Nombre (Fórmula) Fórmula estructural Hcomb (kJ/mol) Hcomb (kJ/g) Suma de enlaces C-C y C-H Suma de enlaces C-O y O-H Compuestos de dos carbonos 7 -1560 -51.88 Etano (C2H6) Etanol (C2H5OH) 6 2 -1367 -29.67 Compuestos de un carbón Metano (CH4) 4 -890 -55.5 3 Metanol (CH3OH) 2 -727 -22.7

12 Calores de combustión de algunas grasas y carbohidratos
Sustancia H comb(kJ/mol) Grasas Aceite vegetal Margarina Mantequilla Carbohidratos Azúcar de mesa (sacarosa) Arroz integral Jarabe de maple

13 CALOR (kJ) ganado o perdido
Resumen de la relación entre cantidad (mol) de sustancia y el calor (kJ) transferido durante una reacción Relación molar de la ecuación balanceada Hreac(kJ/mol) CANTIDAD (mol) del compuesto A CANTIDAD (mol) del compuesto B CALOR (kJ) ganado o perdido

14 Ley de Hess de suma del calor
El cambio de entalpía de un proceso completo es la suma de los cambios de entalpía de sus pasos individuales Ejemplo: Problema: Calcule la energía involucrada en la oxidación del azufre elemental al trióxido de azufre de las siguientes reacciones: 1) S (s) + O2 (g) SO2 (g) H1 = kJ 2) 2 SO2 (g) + O2 (g) 2 SO3 (g) H2 = kJ 3) S (s) + 3/2 O2 (g) SO3 (g) H3 = ?

15 Ley de Hess de suma del calor - I
Para obtener la ecuación #3 debemos agregar la primera ecuación cuatro veces a la reacción #2, y sumarlas: S (s) + O2 (g) SO2 (g) H1 = kJ + 1/2 x [ SO2 (g) +1/2 O2 (g) SO3 (g)] 1/ H2 = kJ S (s) + 3/2 O2 (g) + SO2 (g) SO2 (g) + SO3 (g) H3 = +(-99.2) = kJ S (s) + 3/2 O2 (g) SO3 (g) Hf (SO3) = kJ/mol

16 Aplicación de la ley de Hess: Formación de WC - I
Problema: Cual es la entalpía de reacción, H, para la formación de carburo de tungsteno, WC, de los elementos? Dadas las ecuaciones: 1) 2 W(s) + 3 O2 (g) WO3 (s) H = kJ 2) C(grafito) + O2 (g) CO2 (g) H = kJ 3) 2 WC(s) + 5 O2 (g) WO3 (s) + 2 CO2 (g) H = kJ Plan: Necesitamos reordenar las tres ecuaciones para poder sumarlas, Y obtener la reacción para la formación del carburo de tungsteno a partir de los elementos. Solución: La ecuación para la producción de carburo de tungsteno de los elementos: W(s) + C(grafito) WC(s) H = ? Para obtener la formación, tendremos que cambiar la ecuación #3, que cambiará su H de negativo a positivo

17 Aplicación de la ley de Hess: Formación de WC - II
Debemos agregar 1/2 de la ecuación #1 a la ecuación #2, después agregar 1/2 de la ecuación #3 inversa para obtener la ecuación completa deseada: 1/2 ecuación # W(s) + 3/2 O2 (g) WO3 (s) H = kJ ecuación # C(grafito) + O2 (g) CO2 (g) H = kJ 1/2 ecuación #3 WO3 (s) + CO2 (g) WC(s) + 5/2 O2 (g) inversa H = kJ W(s) + C(grafito) WC(s) H = kJ

18 El proceso general para determinar H0reac a partir de los valores de H0f
Elementos Reactivos Productos Entalpía, H Descomposición Formación H0reac H0reac = m H0f(productos) + n H0f(reactivos) La combustión del metano ocurre con un decremento en la entalpía porque el calor deja el sistema . Por tanto H final < H inicial y el proceso es Exotérmico. La fusión del hielo ocurre con un incremento en la entalpia porque el calor entra el sistema. Como H final > H inicial el proceso es endotermico

19 -45.9 90.3

20 Calores de reacción de entalpías de formación estándares
Calcule Horxn a partir de los valores Hfo 4NH3 (g) + 5 O2 (g)-----> 4 NO (g) + 6H2O (g) Vemos los valores Hfo de la Tabla Calculo Horxn : 4 Hfo [NO (g) Hfo [H2O (g) ) - ( 4 Hfo NH3 (g) ) Hfo O2 (g) 4 mol (90.3) kJ/mol) + 6 mol ( kJ/mol) -(4mol (-45.9 kJ/mol) + 5 mol (0 kJ/mol)) 361 kJ kJ kJ - 0 kJ = -906 kJ

21 Calores de reacción de entalpías de formación estándares
Problema: El metanol (CH3OH) se usa como combustible en motores de alto rendimiento para autos de carreras. Usando los datos de las entalpías de formación, compare la entalpía de combustión estándar por gramo de metanol con la de la gasolina (considere que la gasolina es octano líquido, C8H18). Plan: Escriba las ecuaciones para la combustión de ambos combustibles, encuentre las entalpías de formación de los compuestos, y encuentre el calor de combustión de cada combustible, y obtenga el calor por gramo. Solución: a) Metanol : 2 CH3OH(L) + 3 O2 (g) CO2 (g) + 4 H2O (L) Hocombustión = 2 x Hof[ CO2 (g)] + 4 x Hof[ H2O(L)] - 3 x Hof[ O2 (g)] - 2 x Hof[ CH3OH(L)]

22 Calores de reacción de entalpías de formación estándares
a) Metanol - cont. Hocombustión = 2 x ( kJ) + 4 x ( kJ) - 3 x ( 0 kJ) - 2 x ( - 239kJ) Hocombustión = kJ dos moles de metanol pesan 2 x 32.0 g/mol por tanto energía por gramo = kJ = kJ/g b) Octano : 64.0 g/mol 2 C8H18 (L) + 25 O2 (g) CO2 (g) + 18 H2O(L) Hocombustión = 16 x Hof[ CO2 (g)] + 18 x Hof[ H2O(L)] - 2 x Hof[ C8H18 (L)] - 25 x Hof[O2 (g)] Hocombustión = 16 x ( -394 kJ) + 18 x ( -286 kJ) - 2 x ( -296 kJ) - 1 x (0) Dos moles de octano pesan 2 x g/mol = g Hocombustión = x 104 kJ Entonces energía por g = kJ = kJ/g 228.4g

23 FIN


Descargar ppt "Universidad de La Frontera Fac. Ing. Cs. y Adm. Dpto. Cs. Químicas"

Presentaciones similares


Anuncios Google