La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Fisica Atómica y Molecular en la Medicina (Formulas & Ejercicios) Dr. Willy H. Gerber Comprender como se comportan los sistemas de moléculas y como estas.

Presentaciones similares


Presentación del tema: "Fisica Atómica y Molecular en la Medicina (Formulas & Ejercicios) Dr. Willy H. Gerber Comprender como se comportan los sistemas de moléculas y como estas."— Transcripción de la presentación:

1 Fisica Atómica y Molecular en la Medicina (Formulas & Ejercicios) Dr. Willy H. Gerber Comprender como se comportan los sistemas de moléculas y como estas se constituyen sobre la base de la estructura de los átomos. Objetivos: www.gphysics.net – UACH-Fisica-Atomar-y-Molecular-en-la-Medicina-Versión 05.08

2 Gas - Energía de translación de una partícula 2 www.gphysics.net – UACH-Fisica-Atomar-y-Molecular-en-la-Medicina-Versión 05.08 Masa de la partícula [kg] Velocidad (vector) y sus componentes [m/s] Promedio de la velocidad al cuadrado de las partículas Promedio de la Energía cinética [J = kg m 2 /s 2 ] Densidad de partículas [#/m 3 o Mol/m 3 ] (1 Mol = 6.02x10 23 Partículas = N A – Numero de Avogadro)

3 Gas - Impulso transmitido a una pared 3 www.gphysics.net – UACH-Fisica-Atomar-y-Molecular-en-la-Medicina-Versión 05.08 Impulso (vector) y sus componentes [kg m/s] Pared

4 Gas - Flujo de partículas hacia la pared 4 www.gphysics.net – UACH-Fisica-Atomar-y-Molecular-en-la-Medicina-Versión 05.08 A En un tiempo Δt la mitad (1/2) de las partículas que están en un volumen de base A y altura v x Δt alcanzaran la pared (flujo):

5 Gas – Presión calculada microscópicamente 5 www.gphysics.net – UACH-Fisica-Atomar-y-Molecular-en-la-Medicina-Versión 05.08 El impulso promedio ejercida en el tiempo Δt sobre una sección A de la pared será: Como La presión sobre la pared será: pNVpNV Presión [Pa = N/m 2 ] Numero de partículas [-] Volumen [m 3 ] y

6 Gas – relación con la temperatura 6 www.gphysics.net – UACH-Fisica-Atomar-y-Molecular-en-la-Medicina-Versión 05.08 De la termodinámica tenemos la ecuación de estado de los gases k Constante de Boltzmann (no confundir con constante de Stefan-Boltzmann) (1.38x10 -23 m 2 kg/s 2 K) nmRTnmRT Numero de moles [mol] Constante universal de gases (8.314 J mol -1 K -1 ) Temperatura absoluta [°K]

7 Gas – generalización en función de grados de libertad 7 www.gphysics.net – UACH-Fisica-Atomar-y-Molecular-en-la-Medicina-Versión 05.08 3 grados de libertad 5 grados de libertad ej. H 2, N 2 Para f grados de libertad: 6 grados de libertad ej. H 2 O, CO 2 Adicionalmente a mayores energías existen grados de libertad asociados a las vibraciones de los enlaces (2 x enlace).

8 Gas – Calor especifico de gases 8 www.gphysics.net – UACH-Fisica-Atomar-y-Molecular-en-la-Medicina-Versión 05.08 Para gases bajo condiciones de volumen se tiene que por mol: o sea Ejemplo para moléculas di-atómicas f = 3 f = 5 f = 7 traslación rotación vibración 7R/2 5R/2 3R/2 CVCV T 10 1 10 2 10 3 10 4

9 Gas - Camino libre 9 www.gphysics.net – UACH-Fisica-Atomar-y-Molecular-en-la-Medicina-Versión 05.08 d l Camino libre [m] d

10 Gas - Viscosidad 10 www.gphysics.net – UACH-Fisica-Atomar-y-Molecular-en-la-Medicina-Versión 05.08 Transmisión de impulso

11 Gas - Conductividad 11 www.gphysics.net – UACH-Fisica-Atomar-y-Molecular-en-la-Medicina-Versión 05.08 Transmisión de impulso T2T2 T1T1

12 Interacción entre partículas – Ecuación de van der Waals 12 www.gphysics.net – UACH-Fisica-Atomar-y-Molecular-en-la-Medicina-Versión 05.08 d r

13 Ecuación de van der Waals y el cambio de estado 13 www.gphysics.net – UACH-Fisica-Atomar-y-Molecular-en-la-Medicina-Versión 05.08 b V p Liquido/solido (efecto a y b clave) Gas (efecto a y b despreciable) Cambio “sin sentido”

14 El espectro atómico www.gphysics.net – UACH-Fisica Molecular y Atomar en la Medicina-Versión 05.08 Espectro de absorción Espectro de emisión Líneas espectrales Largo de onda [m] Frecuencia [Hz] Velocidad de la luz [m/s] (3.00x10 8 m/s) Energía de un fotón [J] Constante de Planck [Js] (6.63x10 -34 Js) λνcEhλνcEh

15 Electrón en un átomo o molécula 15 www.gphysics.net – UACH-Fisica Molecular y Atomar en la Medicina-Versión 05.08 La energía del orbital es calculada con la ecuación de Bohr que modela el átomo como un sistema de electrones rotando en torno a un núcleo. Enemhε0nEnemhε0n Energía en el orbital n [J o eV; 1 eV = 1.59x10 -19 J] Carga del electrón (1.6x10 -19 C) Masa del electrón (9.11x10 -31 kg) Constante de Planck (6.63x10 -34 Js) Constante de Campo (8.85x10 -12 C 2 /Nm 2 ) Numero cuántico principal l = 0, 1, 2, … n – 1 m = -l, -l+1, …,l-1,l s = - ½, ½ Niels Bohr (1885-1962) Aun que el modelo es incorrecto, entrega valores que concuerdan con los medidos para el átomo de hidrogeno. Para los demás átomos y moléculas existen correcciones. Bohr describe los restantes números cuánticos como deformaciones de la orbita.

16 Electrón en un átomo o molécula 16 www.gphysics.net – UACH-Fisica-Atomar-y-Molecular-en-la-Medicina-Versión 05.08 Para describir un átomo con los paquetes de onda se observa algo curioso: existen solo algunas orbitas posibles para los electrones. Esto se debe a que las funciones deben ser cíclicas (postulado de De Broglie): Hoy lo entendemos pero cuando se realizaron los modelos iníciales simplemente se enuncio que el electrón se movía (partícula) en orbitas bien definidas y que las demás orbitas están prohibidas.

17 Relación de incertidumbre de Heisenberg 17 www.gphysics.net – UACH-Fisica-Atomar-y-Molecular-en-la-Medicina-Versión 05.08 El paquete de ondas esta compuesto de distintas ondas con un impuso que varían en Δp en tormo de un valor medio. El modelo de función de onda resulta en dos inecuaciones de incerteza en la medición de posición, impulso, energía y tiempo. Esta insertes es propia de los sistemas y no puede ser eliminada con equipos de mayor precisión. Werner Heisenberg (1901-1976)

18 MRI 18 www.gphysics.net – UACH-Fisica-Atomar-y-Molecular-en-la-Medicina-Versión 05.08 También en la moléculas existe el efecto Zeeman. En base a este se puede determinar el tipo de moléculas y la cantidad en una muestra Decaimiento espontaneo Cambio forzado B hγBhγB Constante de Planck (1.054x10 -34 Js) [Js] Radio giro magnético (1.76x10 11 1/Ts) [1/Ts] Campo magnético [T]

19 Ejercicios 19 www.gphysics.net – UACH-Fisica-Atomar-y-Molecular-en-la-Medicina-Versión 05.08 1.Si la presión del aire es de 101.2 kPa donde el 80% de los moles corresponde a Nitrógeno y el 20% a Oxigeno, cuantos moles hay de cada gas a 20°C? (33.218 mol, 8.300 mol) 2.Que presión (parcial) genera cada uno de los gases? (86.96 kPa, 20.24 kPa) 3.Que densidad tiene el aire si el peso del Nitrógeno es 14 g/mol y del Oxigeno es 16 g/mol? Recuerde que en el gas ambos elementos existen en forma de moléculas N 2 y O 2 ?. (1.200 kg/m 3 ) 4.Cual es la energía de una molécula de N 2 y O 2 si se asume que a 20C tienen 5 grados de libertad? (1.01x10 -23 J, 1.01x10 -23 J) 5.Cual es la velocidad promedio de una molécula de N 2 y una de O 2 ? (659.46 m/s, 616.87 m/s) 6.Cual es el camino libre de cada una molécula de aire si se supone que los radios del nitrógeno y oxigeno son iguales a 1.54x10 -10 m y el numero de moles es el del aire calculado en 1? Indique además el camino libre en función del radio de la molécula. (9.49x10 -8 m, 616.37) 7.Si se asume una masa y velocidad promedio de las moléculas N 2 y O 2 como 4.78x10 -26 kg y 650.9 m/s, cual seria la viscosidad del aire? (2.463x10 -5 Pa s) 8.Que valor asume para los parámetros definidos en 7 la constante de conducción térmica? 1.799x10 -2 J/m 2 s) 9.Cual es el valor del factor constante en la formula para el calculo de la energía de los orbitales de un átomo? (13.6 eV)

20 Ejercicios 20 www.gphysics.net – UACH-Fisica-Atomar-y-Molecular-en-la-Medicina-Versión 05.08 10.Cual es la energía de los primeros orbitales según el modelo de Bohr? (-13.6 eV, -3.4 eV, -1.511eV) 11.Cual es la energía que debe emitir como luz un electrón que salta del tercer al primer nivel? (12.09 eV) 12.A que frecuencia de luz corresponde el fotón emitido para la energía liberada según el ejercicio 11? (2.91x10 +15 Hz) 13.A cual largo de onda corresponde un fotón que es emitido desde el primer orbital? (9.17x10 -8 m) 14.Según De Broglie a que radio del orbital correspondería el largo de onda calculado en 13? (1.46x10 -8 m) 15.Si se toma el radio calculado en 14 como la incerteza de la posición del electrón en el átomo, cual seria la incerteza del impulso y de la velocidad según la relación de incertidumbre de Heisenberg? (3.62x10 -27 kg m/s, 3.97x10 3 m/s) 16.En el caso de la segunda relación de Heisenberg el ancho de la línea espectral (ΔE) es una medida del tiempo que puede permanecer en dicho estado. Si se determinara que el ancho de la línea es de 10 -20 eV, cuanto tiempo en promedio se queda el electrón en este estado? (3.31x10 4 s) 17.Si en un equipo de resonancia magnética nuclear se aplica un campo magnético de 1 Teslar y se generan emisiones de fotones por efecto de saltos entre los niveles del split (división) en el espectro, que frecuencia tendrían? (5.6x10 10 Hz)

21 Resultados 21 www.gphysics.net – UACH-Fisica-Atomar-y-Molecular-en-la-Medicina-Versión 05.08 1.p=101.2 kPa =1.012x10 8 Pa => pV=nRT => n=pV/RT => con V=1m 3, T=20°C+273.15=293.15°K => n=41.52 mol/m 3 N 2 : 80% => 0.8*41.52 mol/m 3 = 33.218 mol/m 3 O 2 : 20% => 0.2*41.52 mol/m 3 = 8.3 mol/m 3 2.p=101.2 kPa =1.012x10 8 Pa => N 2 : 80% => 0.8*101.2 kPa = 86.96 kPa, O 2 : 20% => 0.2*101.2 kPa = 20.24 kPa 3.N 2 : 14 g/mol=0.014 kg/mol=> 33.218 mol/m 3 0.014 kg/mol = 0.93 kg/m 3 O 2 : 16 g/mol=0.016 kg/mol => 8.3 mol/m 3 0.016 kg/mol = 0.266 kg/m 3 Densidad total = 0.93 kg/m 3 +0.266 kg/m 3 =1.200 kg/m 3 4.E=fkT/2 =>T=20°C+273.15=293.15°K, f=5=>E=1.01x10 -20 J en ambos casos. 5.mv2/2=fkT/2=>v=√fkT/m N 2 : 14 g/mol=0.014 kg/mol=> 33.218 mol/m 3 6.02x10 -23 1/mol=4.65x10 -26 kg O 2 : 16 g/mol=0.016 kg/mol => 8.3 mol/m 3 6.02x10 -23 1/mol=5.32x10 -26 kg N 2 : 659.46 m/s O 2 : 616.87 m/s 6.L=1/√2 πd 2 n => r= 1.54x10 -10 m, n=41.52 mol/m 3 =>L=9.49x10 -8 m, L/r=616.37 7.η=1/3 nml√ =>m= 4.78x10 -26 kg, √ = 650.9 m/s=> η = 2.463x10 -5 Pa s 8.λ=1/6 fknl√ =>f=5, n=41.52 mol/m 3, √ = 650.9 m/s=> λ= 1.799x10 -2 J/m 2 s 9.R=e 4 m/8ε 0 2 h 2 =2.17x10 -18 J=13.6 eV 10.R/1 2 =-13.6 eV, R/2 2 =-3.4 eV, R/3 2 =-1.511eV 11.dE =E 3 -E 1 = -1.511eV-(-13.6eV)=12.09eV

22 Resultados 22 www.gphysics.net – UACH-Fisica-Atomar-y-Molecular-en-la-Medicina-Versión 05.08 12. E=hν=>ν=E/h => E=12.09eV=1.927x10 -18 J=> ν= 2.91x10 +15 Hz 13. c=λν=>λ=c/ν= 9.17x10 -8 m 14. 2πr=n λ, n=1=>r= λ/2π= 1.46x10 -8 m 15. r=Δx=>Δp=h/2 Δx =>Δp =3.62x10 -27 kg m/s, Δp=mΔv => m =9.11x10 -31 kg Δv=Δp/m = 3.97x10 3 m/s 16. ΔE= 10 -20 eV=1.59x10 -39 J=> Δt=h/2 ΔE= 3.31x10 4 s 17. ΔE=hγB=>ν=E/h=2ΔE/h= 5.6x10 10 Hz


Descargar ppt "Fisica Atómica y Molecular en la Medicina (Formulas & Ejercicios) Dr. Willy H. Gerber Comprender como se comportan los sistemas de moléculas y como estas."

Presentaciones similares


Anuncios Google