La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Módulo 8 Ecuaciones Lineales.

Presentaciones similares


Presentación del tema: "Módulo 8 Ecuaciones Lineales."— Transcripción de la presentación:

1 Módulo 8 Ecuaciones Lineales

2 Ver Respuestas Pre-prueba 1) x + 8 = 12 6) 7x + 4 = 41

3 Preprueba - Respuestas
x + 8 = 12 x = 4 6) 7x + 4 = 41 x = 2) x - 3 = 25 x = 28 7) x = 60 3) 5x = 110 x = 22 8) 3 = 8 + 3x x = 4) x = ) 6 = 5x - 4 x =2 5) 5x - 6 = 48 x = 10) x = 18

4 Definición de una ecuación lineal
Una ecuación lineal en x es una igualdad de la forma ax + b = c donde a, b, c son números reales con a diferente de cero. Definición 2x + 1 = 5 donde a =2, b = 1, c = 5 3x - 6 = 0 donde a = 3, b = -6, c = 0 8x = 1 donde a = 8, b = 0, c = 1 Ejemplo 1: Ecuaciones lineales

5 Definición de una ecuación lineal
También podemos decir que ax + b = c es una ecuación de primer grado en x. Nota 5x2 + 3 = 5 Es una ecuación de segundo grado 6x3 + 2x = 4 Es una ecuación de tercer grado Contraejemplo 1: Los siguientes no son Ecuaciones lineales

6 Raíz o solución de una ecuación
Decimos que la solución o raíz de una ecuación es el valor que satisface a la ecuación, es decir, la convierte en una proposición cierta. Solución o raíz de una ecuación Si en la ecuación 2x + 5 = 19 sustituimos x por 7 obtenemos: 2(7) + 5 = 19 = 19 Proposición Cierta Por lo tanto x = 7 es una solución o raíz de la ecuación 2x + 5 = 19 Ejemplo 2

7 Raíz o solución de una ecuación
Si en la ecuación 7x - 5 = 16 sustituimos x por 3 obtenemos: 7(3) - 5 = 16 = 16 Proposición Cierta Por lo tanto x = 3 es una solución o raíz de la ecuación 7x - 5 = 16 Ejemplo 3

8 Raíz o solución de una ecuación
Si en la ecuación 4x - 9 = 31 sustituimos x por 8 obtenemos: 4(8) - 9 = 31 = 31 Proposición Falsa Por lo tanto x = 8 no es solución de la ecuación 4x - 9 = 31 Contraejemplo 2

9 Ecuaciones equivalentes
Decimos que dos o más ecuaciones son equivalentes si tienen las mismas soluciones o raíces. Ecuaciones equivalentes

10 Ecuaciones equivalentes
Las ecuaciones 6x - 4 = 20 y 6x = 24 son equivalentes porque las dos tienen la misma solución, x = 4. Veamos: 6(4) - 4 = 20 = (4) = = 20 Cierto = 24 Cierto Por lo tanto son ecuaciones equivalentes. Ejemplo 4

11 Solución de una ecuación
Resolver una ecuación significa encontrar la solución a través de la obtención de ecuaciones equivalentes utilizando las reglas básicas de las igualdades que estudiaremos a continuación. Resolver una ecuación

12 Reglas Básicas de las igualdades
Si A, B, C son números reales tales que A = B entonces: A + C = B + C A - C = B - C Podemos sumar o restar una misma cantidad a ambos lados de una misma ecuación obteniendo una ecuación equivalente a la ecuación original. Regla 1

13 Reglas Básicas de las igualdades
Resuelva x + 5 = 18 x = Restamos 5 a ambos lados x = Solución Ejemplo 5

14 Reglas Básicas de las igualdades
Resuelva x - 6 = 19 x = Sumamos 6 a ambos lados x = Solución Ejemplo 6

15 Reglas Básicas de las igualdades
Resuelva 7 = -3 + x 7 + 3 = x Sumamos 6 a ambos lados 10 = x Solución Ejemplo 7

16 Reglas Básicas de las igualdades
Si A, B, C son números reales tales que A = B y C ≠ 0 entonces: A · C = B · C Podemos multiplicar o dividir una misma cantidad (diferente de cero) a ambos lados de una misma ecuación obteniendo una ecuación equivalente a la ecuación original. Regla 2

17 Reglas Básicas de las igualdades
Resuelva 7x = 56 Dividimos por 7 a ambos lados x = Solución Ejemplo 8

18 Reglas Básicas de las igualdades
Resuelva Multiplicamos por 6 a ambos lados x = Solución Ejemplo 9

19 Reglas Básicas de las igualdades
Resuelva -4x = -28 Dividimos por 4 a ambos lados x = Solución Ejemplo 10 Los siguientes ejemplos ilustran la aplicación de las dos reglas para resolver la misma ecuación. Nota

20 Reglas Básicas de las igualdades
Resuelva 3x + 5 = 8 Ejemplo 11 Restamos 5 a ambos lados Simplificamos Dividimos por 3 a ambos lados Solución

21 Reglas Básicas de las igualdades
Resuelva Prueba: Ejemplo 12 Sumamos 6 a ambos lados Simplificamos Multiplicamos por 3 a ambos lados Solución Cierto

22 Reglas Básicas de las igualdades
Resuelva 120 – 80x = 50 Prueba: Ejemplo 13 Restamos 120 a ambos lados Simplificamos Dividimos por -80 a ambos lados Solución (Simplificada) Cierto

23 Ver Respuestas Post-prueba 1) x + 8 = 12 6) 7x + 4 = 41

24 x + 8 = 12 x = 4 6) 7x + 4 = 41 x = 2) x - 3 = 25 x = 28 7) x = 60 3) 5x = 110 x = 22 8) 3 = 8 + 3x x = 4) x = ) 6 = 5x - 4 x =2 5) 5x - 6 = 48 x = 10) x = 18 Post-prueba - Respuestas


Descargar ppt "Módulo 8 Ecuaciones Lineales."

Presentaciones similares


Anuncios Google