La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Asociación Universidad Privada San Juan Bautista

Presentaciones similares


Presentación del tema: "Asociación Universidad Privada San Juan Bautista"— Transcripción de la presentación:

1 Asociación Universidad Privada San Juan Bautista
Curso: Biofísica Médica Tema: Magnitudes y medidas Campo Santo de Yungay, al fondo el imponente Huascarán Dr. Marco A. Castro Márquez Facultad de Ciencias de la Salud Escuela Profesional de Medicina Humana 09/04/2017

2 Tema 1 Magnitudes y Unidades
Magnitud: Propiedad o Cualidad que es susceptible de ser medida y por lo tanto puede expresarse cuantitativamente. Unidades o Sistema de Unidades: Conjunto de referencias (Unidades) elegidas arbitrariamente para medir todas las magnitudes. 09/04/2017

3 El ser Humano por naturaleza se empeña en medir, definir, comparar
El ser Humano por naturaleza se empeña en medir, definir, comparar. Por lo tanto desde sus orígenes se estableció la necesidad de medir. Las primeras magnitudes empleadas fueron la longitud y la masa. Aquellas más intuitivas. 09/04/2017

4 Para la longitud se estableció como unidad el tamaño de los dedos (pulgadas) y la longitud del pie (pie), entre otros. Algunas sociedades siguen utilizando esta forma de medir. Para la masa , se compararon las cantidades mediante piedras, granos, conchas, etc. 09/04/2017

5 Cada persona llevaba consigo su propio patrón de medida
Conveniencia: Cada persona llevaba consigo su propio patrón de medida Inconveniencia: Las medidas variaban de un individuo a otro, sin poder realizar equivalencias. 09/04/2017

6 Los esfuerzos realizados por Carlomagno, para unificar el sistema de unidades fracasaron debido a que cada señor feudal fijaba por derecho sus propias unidades. A medida que aumentó el intercambio entre los pueblos, se presentó el problema de la diferencia de patrones y surgió la necesidad de unificar criterios. 09/04/2017

7 El primer patrón de medida de longitud lo estableció Enrique I de Inglaterra, llamó “YARDA” a la distancia entre su nariz y el dedo pulgar. 1m = 1,0936 Yd Le sigue en importancia la “TOESA” creada en Francia, consistía en una barra de hierro con una longitud aproximada de dos metros. 1T =1,949 m 09/04/2017

8 Posteriormente, con la revolución francesa se crea el sistema métrico decimal, lo cual permitió unificar las diferentes unidades , y crear un sistema de equivalencias con numeración decimal. También existen otros sistemas métricos como el Sistema métrico inglés, Sistema técnico, y el Sistema usual de unidades en Estados unidos (SUEU) que usan otras unidades de medida. 09/04/2017

9 Entre ellos tienen equivalencias.
El sistema métrico más actual corresponde al Sistema Internacional de Unidades ( S.I. ) y gran parte de las unidades usadas con frecuencia se han definido en término de las unidades estándar del S.I. 09/04/2017

10 Los orígenes del S.I. se remontan al siglo XVIII cuando se diseñó el Sistema Métrico Decimal basado en parámetros relacionados con fenómenos físicos y notación decimal. En 1798 se celebró una conferencia científica incluyendo representantes de los Países Bajos, Suiza, Dinamarca, España e Italia, además de Francia, para revisar los cálculos y diseñar prototipos modelos. Se construyeron patrones permanentes de platino para el metro y el kilogramo. 09/04/2017

11 Además aparecieron dos nuevos sistemas derivados del anterior: C. G. S
Además aparecieron dos nuevos sistemas derivados del anterior: C.G.S. y el Sistema de Giorgi. La Conferencia General de Pesas y Medidas, que ya en 1948 había establecido el Joule (J) como unidad de energía (1 Cal = 4,186 J), en la 10a Conferencia (1954) adoptó el Sistema MKSA (metro, kilogramo masa, segundo, ampere), preexistente -originado en la propuesta del Profesor G. Giorgi de 1902-, en el cual se incluyó el Kelvin (K) y la Candela (cd), como unidades de temperatura e intensidad luminosa respectivamente. 09/04/2017

12 Sistema Internacional de Unidades S.I.
Permite unificar criterios respecto a la unidad de medida que se usará para cada magnitud. Es un conjunto sistemático y organizado de unidades adoptado por convención El Sistéme International d´Unités (SI) esta compuesto por tres tipos de magnitudes i. Magnitudes fundamentales ii. Magnitudes derivadas iii. Magnitudes complementarias 09/04/2017

13 i. Magnitudes Fundamentales
El comité internacional de pesas y medidas ha establecido siete cantidades básicas, y asignó unidades básicas oficiales a cada cantidad 09/04/2017

14 Magnitudes fundamentales (Son sólo siete)
Ampere Corriente eléctrica mol Cantidad de sustancia cd Candela Intensidad luminosa K Kelvin Temperatura s segundo Tiempo kg kilogramo Masa m metro Longitud Símbolo de la unidad Unidad básica cantidad 09/04/2017

15 Cada una de las unidades que aparecen en la tabla tiene una definición medible y específica, que puede replicarse en cualquier lugar del mundo. De las siete magnitudes fundamentales sólo el “kilogramo” (unidad de masa) se define en términos de una muestra física individual. Esta muestra estándar se guarda en la Oficina Internacional de Pesas y Medidas (BIMP) en Francia (1901) en el pabellón Breteuil, de Sévres. Se han fabricado copias de la muestra original para su uso en otras naciones. 09/04/2017

16 Definición de “metro” Originalmente se definió como la diezmillonésima parte de un meridiano (distancia del Polo Norte al Ecuador). Esa distancia se registro en una barra de platino iridiado estándar. Actualmente esa barra se guarda en la Oficina Internacional de Pesas y medidas de Francia. Se mantiene en una campana de vacío a 0°C y una atmósfera de Presión 09/04/2017

17 Definición actual de “metro” (año 1983)
El nuevo estándar de longitud del S.I. se definió como: La longitud de la trayectoria que recorre una onda luminosa en el vacío durante un intervalo de tiempo igual a 1 / segundos. 09/04/2017

18 corresponde aproximadamente a: 300.000.000 m/s = 300.000 km/s
El nuevo estándar de metro es más preciso, su definición se basa en un valor estándar para la velocidad de la luz. De acuerdo con la Teoría de Einstein , la velocidad de la luz es una constante fundamental cuyo valor exacto es 2, x m/s corresponde aproximadamente a: m/s = km/s 09/04/2017

19 Definición de “segundo”
La definición original de tiempo se basó en la idea del día solar, definido como el intervalo de tiempo transcurrido entre dos apariciones sucesivas del sol sobre un determinado meridiano de la tierra. Un segundo era 1 / del día solar medio 09/04/2017

20 Definición actual de “segundo” (año 1976)
El nuevo estándar de tiempo del S.I. se definió como: el tiempo necesario para que el átomo de Cesio 133 vibre veces (periodos de la radiación correspondiente a la transición entre dos niveles hiperfinos) 09/04/2017

21 Los mejores relojes de cesio son tan precisos que no se adelantan ni se atrasan más de 1 segundo en años 09/04/2017

22 Otras definiciones Unidad de temperatura: Kelvin, es la fracción 1 / 273, 16 de la temperatura termodinámica del punto triple del agua Unidad de intensidad luminosa: candela, es la intensidad luminosa en una dirección dada, de una fuente que emite una radiación monocromática de frecuencia 540 x 1012 hertz 09/04/2017

23 Unidad de corriente eléctrica: Ampere, es la intensidad de una corriente constante que mantenida en dos conductores paralelos, rectilíneos, de longitud infinita, de sección circular despreciable y colocados a distancia de un metro el uno del otro en el vacío , produce entre estos conductores una fuerza determinada por metro de longitud. 09/04/2017

24 ii. Magnitudes Derivadas
Es posible medir muchas magnitudes además de las siete fundamentales, tales como: presión, volumen, velocidad, fuerza, etc. El producto o cuociente de dos o más magnitudes fundamentales da como resultado una magnitud derivada que se mide en unidades derivadas. 09/04/2017

25 ii. Magnitudes derivadas
unidad básica Símbolo de la unidad Area metro cuadrado m2 Volumen metro cúbico m3 Frecuencia Hertz 1 / s = Hz Densidad de masa kilogramo por metro cúbico kg / m3 Velocidad metro por segundo m / s Velocidad angular radián por segundo rad / s Aceleración metro por segundo cuadrado m / s2 09/04/2017

26 Resistencia eléctrica Ohm Ω luminosidad Candela por metro cuadrado
Fuerza Newton kg m /s2 = N Presión Pascal N / m2 = Pa Trabajo y energía Joule N m = J Potencia Watt J/s = W Carga eléctrica Coulomb A s = C Resistencia eléctrica Ohm Ω luminosidad Candela por metro cuadrado cd / m2 09/04/2017

27 iii. Magnitudes Complementarias
Son de naturaleza geométrica Se usan para medir ángulos magnitud Unidad de medida Símbolo de la unidad Ángulo plano Radián rad Ángulo sólido Esterorradián sr 09/04/2017

28 Las unidades del S.I. no se han incorporado en forma total en muchas aplicaciones industriales sobre todo en el caso de aplicaciones mecánicas y térmicas, debido a que las conversiones a gran escala son costosas. Por este motivo la conversión total al S.I. tardará aún mucho tiempo. Mientras tanto se seguirán usando viejas unidades para la medición de cantidades físicas Algunas de ellas son: pie (ft), slug (slug), libra (lb), pulgada (in), yarda (yd), milla (mi), etc. 09/04/2017

29 Recordemos El S.I. adopta sólo una unidad de medida para cada magnitud física. El S.I. se compone de: i) M. Fundamentales: son 7, no se derivan de otra. ii) M. Derivadas: corresponden al producto o cuociente de sí misma de dos o más magnitudes fundamentales. iii) M. Complementarias: se usan para medir ángulos. 09/04/2017

30 Múltiplos y submúltiplos
Otra ventaja del sistema métrico S.I. sobre otros sistemas de unidades es que usa prefijos para indicar los múltiplos de la unidad básica. prefijos de los múltiplos: se les asignan letras que provienen del griego. prefijos de los submúltiplos: se les asignan letras que provienen del latín. 09/04/2017

31 Múltiplos (letras Griegas)
Prefijo Símbolo Factor de multiplicación Deca Da Hecto h Kilo k Mega M Giga G Tera T Peta P Exa E 09/04/2017

32 Submúltiplos (Latin) Prefijo Símbolo Factor de multiplicación Deci d
1 / Centi c 1 / Mili m 1 / Micro 1 / Nano n 1 / Pico p 1 / Femto f 1 / atto a 1 / 09/04/2017

33 Ejemplos 45 kilómetros = 45 x 1000 metros = 45 000 m
640 µA = 640 x = 0, A 357,29 milimetros = 357,29 x 1 = 0,357 m 1 000 09/04/2017

34 Equivalencias más comunes
De Longitud: 1 metro (m) = centímetros (cm) 1 centímetro (cm) = 10 milímetros (mm) 1 metro (m) = milímetros (mm) 1 kilómetro (km) = metros (m) 1 kilómetro (km) = milímetros (mm) 09/04/2017

35 Otras equivalencias de longitud
1 pulgada (in) < > 25,4 milímetros (mm) 1 pie (ft) < > 0,3048 metros (m) 1 yarda (yd) < > 0,914 metros (m) 1 milla (mi) < > 1,61 kilómetros 1 metro (m) < > 39,37 pulgadas (in) 1 femtómetro (fm) < > 10 –15 metros (m) 09/04/2017

36 Equivalencias de masa 1 kilogramo (kg) < > 1 000 gramos (g)
1 tonelada (ton) < > kilogramos (kg) 1 slug < > 14,6 kilogramos(kg) 09/04/2017

37 Equivalencias de tiempo
1 año < > 365,25 días 1 día < > 24 horas (hr) 1 hora (hr) < > 60 minutos (min) 1 minuto (min) < > 60 segundos (s) 1 hora (hr) < > segundos (s) 1 día < > segundos (s) 1 año < > segundos (s) 09/04/2017

38 Equivalencias de área área = largo x ancho = longitud x longitud
1 metro cuadrado (m2) < > centímetros2 (cm2) 09/04/2017

39 Equivalencias de volumen Volumen = largo x ancho x alto = long x long x long
1 metro cúbico (m3) < > cm3 1 litro (l) < > cm3 1 metro cúbico (m3) < > litros (l) 09/04/2017

40 Importancia de Homogeneizar Unidades. Ejemplo:
El 23 de septiembre de 1999, el "Mars Climate Orbiter" se perdió durante una maniobra de entrada en órbita cuando el ingenio espacial se estrelló contra Marte. La causa principal del contratiempo fue achacada a una tabla de calibración del propulsor, en la que se usaron unidades del sistema británico en lugar de unidades métricas. El software para la navegación celeste en el Laboratorio de Propulsión del Chorro esperaba que los datos del impulso del propulsor estuvieran expresados en newton segundo, pero Lockheed Martin Astronautics en Denver, que construyó el Orbiter, dio los valores en libras de fuerza segundo, y el impulso fue interpretado como aproximadamente la cuarta parte de su valor real. El fallo fue más sonado por la pérdida del ingenio espacial compañero "Mars Polar Lander", debido a causas desconocidas, el 3 de diciembre 09/04/2017

41 Vernier 09/04/2017

42 El primer instrumento de características similares fue encontrado en un naufragio en la isla de Giglio, cerca de la costa italiana, datado en el siglo VI a. C. Aunque considerado raro, fue usado por griegos y romanos. Durante la Dinastía Han (202 a. C  d. C.), también se utilizó un instrumento similar en China, hecho de bronce, hallado con una inscripción del día, mes y año en que se realizó 09/04/2017

43 Se atribuye al cosmógrafo y matemático portugués Pedro Nunes ( ) —que inventó el nonio o nonius— el origen del pie de rey. También se ha llamado pie de rey al vernier, porque hay quien atribuye su invento al geómetra Pierre Vernier ( ), aunque lo que verdaderamente inventó fue la regla de cálculo Vernier, que ha sido confundida con el nonio inventado por Pedro Núñez. En castellano se utiliza con frecuencia la voz nonio para definir esa escala. 09/04/2017


Descargar ppt "Asociación Universidad Privada San Juan Bautista"

Presentaciones similares


Anuncios Google