Descargar la presentación
La descarga está en progreso. Por favor, espere
1
Concepto de Porcentaje
La expresión porcentaje o tanto por ciento equivale a “ tantos de cada 100 ”. Es decir, hablar del 40% es hablar de 40 de cada 100, osea 40% =
2
20 % Tenemos bolsas de 25 caramelos, entre los cuales 5 son de menta.
1. Tanto por ciento o porcentaje Tenemos bolsas de 25 caramelos, entre los cuales 5 son de menta. ¿Cuántos caramelos de menta habrá por cada 100 caramelos? 25 caramelos caramelos caramelos caramelos 5 de menta de menta de menta de menta Hay 20 caramelos de menta por cada 100 caramelos. 20 % Un tanto por ciento o porcentaje es la cantidad que hay en cada 100 unidades. Se expresa añadiendo a la cantidad el símbolo %
3
Formas de representar el porcentaje
Cada porcentaje es equivalente a una fracción. Así, el 65% = El 100% = El 65% = Por tanto, existe una relación clara entre los porcentajes, las fracciones y los números decimales. Veámosla esquemáticamente: Porcentajes Fracciones Decimales Un porcentaje se lo puede expresar de las siguientes maneras: Porcentaje Fracción Número decimal 65% 0,65
4
Cálculo de porcentajes: porcentaje como fracción
Hallar el 35% de 420 : 35 % de 420 = Cálculo de porcentajes: porcentaje como regla de tres Ejemplo: Calcular 40% de 650 Total Parte x
5
Problemas de porcentajes
Asignaremos nombres a los diferentes elementos que integran el cálculo de un tanto por ciento: 30% de 40 = 12 parte porcentaje total En el salón de clase, el 40% son mujeres. Si en total hay 30 alumnos, ¿cuántas son las mujeres?
6
PORCENTAJES En mi clase, de 30 que somos en total, 12 son mujeres. ¿Qué porcentaje representan las chicas? Alumnos % x En mi clase hay 12 mujeres y representan el 40% del total. ¿Cuántos somos en total? % Alumnos mujeres x
7
2. Cálculo de porcentajes
Las paredes de una cocina se han recubierto de azulejos blancos y verdes, siguiendo este modelo. En la figura aparecen 100 azulejos, de los cuales 20 son verdes. Esto es, el 20% ¿Cuántos azulejos verdes se colocaron si se han necesitado 1550 para recubrir las paredes? El 20% = El 20% de 1550 = Para calcular un tanto por ciento o porcentaje de una cantidad, se multiplica la cantidad por la fracción equivalente al porcentaje. Se han colocado 310 azulejos El 15% de 360 es igual a Ejemplo: Ejercicio: En una clase hay 25 estudiantes, de los cuales el 60% son alumnas. ¿Cuántas alumnas hay en la clase? El 60% de 25 = Hay 15 alumnas.
8
Si rebajan el 12%, se pagará el 88% de su valor inicial.
5. Resolución de problemas (I) A Mercedes le gusta mucho un libro de Arte que cuesta 25 €, pero por ser la Feria del Libro está rebajado en un 12%. ¿Cuánto cuesta el libro? La rebaja es el 12% de 25 = El libro cuesta 25 – 3 = 22 € OBSERVA Si rebajan el 12%, se pagará el 88% de su valor inicial. 88% de 25 = 0,88 × 25 = 22 Ricardo esta disgustado porque por retrasarse unos días en pagar una deuda de 160 € le han aplicado un recargo del 15%. ¿Cuánto tiene que pagar? El recargo es el 15% de 160 = 0,15 × 160 = 24 Debe pagar = 184 € OBSERVA Si le recargan el 15%, pagará el 115% de su valor inicial. 115% de 160 = 1,15 × 160 = 184
9
Cada disco costará 12 · 0,85; el 85% de 12 0,85
6. Resolución de problemas (II) Problema: Una tienda de discos hace un 15% de descuento. Isabel ha decidido aprovechar estas rebajas para comprar discos compactos con las 120 € que tiene ahorradas. ¿Cuántos dis-cos podrá comprar si el precio de cada uno de ellos sin el descuento es de 12 euros? Primero: Leer el enunciado y subrayar los datos y lo que hay que averiguar Se hace un 15% de descuento. Se dispone de 120 €. Cada disco vale 12 euros. Segundo: Interpretar la información del enunciado mediante un esquema El 15% de descuento significa que rebajan 15 € por cada 100 de compra. 15% 0,15 0% % % % % % % % % % % , , , , , , , , , Cada disco costará 12 · 0,85; el 85% de 12 0,85 Tercero: Hacer los cálculos necesarios y criticar el resultado Precio inicial: 12 € Precio rebajado: 0,85 · 12 = 10’20 € Isabel puede comprar: 120 : 10’20 = 11,76 (Pero esta cantidad no es posible con discos). Comprará 11 discos, por 11 · 10’20 = 112’20 € Le quedarán 112’20 – 120 = 7’80 euros
10
Un descuento del 20% quiere decir que de cada 100 euros pagamos 80.
7. Problemas de porcentajes (I) Ejemplo1. En las rebajas de enero el descuento de una tienda es del 20% sobre el precio indicado. Un señor compra un juego de toallas etiquetado con 90 euros. ¿Cuánto tiene que pagar? Un descuento del 20% quiere decir que de cada 100 euros pagamos 80. Aplicando la regla de tres, se tiene: Si de 100 euros pagamos 80 De euros pagaremos x x Tendrá que pagar 72 euros por el juego de toallas. En la práctica Un descuento del 20% equivale a multiplicar por 0,20. La cantidad resultante es lo rebajado. Rebaja: 90 · 0,20 = 18. Se paga: 90 – 18 = 72 euros Directamente. Si descuentan el 20%, se pagará el 80%. Se pagarán 90 · 0,80 = 72 euros
11
Aplicando la regla de tres simple se tiene:
8. Problemas de porcentajes (II) Ejemplo 2. Una señorita compra un coche cuyo precio de fábrica es de 8200 euros. A este precio hay que añadirle un16% de IVA (impuesto sobre el valor añadido). ¿Cuál será el precio final del coche? Si el impuesto es del 16%, quiere decir que por cada 100 euros debemos pagar 116. Aplicando la regla de tres simple se tiene: Si por 100 euros pagamos 116 Por euros pagaremos x x Por tanto, tendrá que pagar 9512 euros por el coche. En la práctica Un incremento del 16% equivale a multiplicar por 0,16. La cantidad resultante es el incremento total. Incremento: 8200 · 0,16 = 1312. Se paga: = 9512 euros Directamente. Si se incrementa el 16%, se pagará el 116%. Se pagarán 8200 · 1,16 = 9512 euros
Presentaciones similares
© 2024 SlidePlayer.es Inc.
All rights reserved.