Descargar la presentación
La descarga está en progreso. Por favor, espere
Publicada porInés Calderón Murillo Modificado hace 6 años
1
Tejidos Biológicos: Clasificación, estructura y función
La conformación del organismo y su equilibrio se explica por la interacción de sus fuerzas de acción (D’arcy Thompson 1917)
2
Los tejidos del cuerpo humano se clasifican en cuatro tipos:
TIPOS DE TEJIDOS Los tejidos del cuerpo humano se clasifican en cuatro tipos: Epitelial Nervioso Muscular Conectivo
3
TEJIDO EPITELIAL El tejido epitelial es básicamente un tejido de cubrimiento. Se especializa en absorber, secretar, transportar, excretar o proteger los órganos que recubre. Estas células mueren y se regeneran constantemente.
4
ESTRUCTURA Y ALINEACIÓN CELULAR DEL TEJIDO EPITELIAL
Una sola línea de células epiteliales se describe como simple. Dos o más líneas de células espiteliales forman epitelio estratificado y en términos de su forma se puede clasificar como escamoso, cuboide y columnar.
5
Su unidad funcional es la neurona.
TEJIDO NERVIOSO Compone las principales partes del sistema nervioso: Cerebro, médula espinal, nervios periféricos, terminaciones nerviosas y la sensación orgánica. Su unidad funcional es la neurona. Las principales características de este tejido son la irritabilidad y la conductividad. El tejido nervioso puede ser lesionado por excesiva tensión o compresión
6
TEJIDO MUSCULAR El tejido muscular se divide en tres categorías: Esquelético, liso y cardíaco. Las tres categorías desempeñan función de conductividad y contractilidad. El tejido muscular esquelético o estriado se especializa en la generación de fuerza para mantener la postura y producir movimientos; el tejido muscular liso es de movimiento involuntario y es inervado por nervios simpáticos y parasimpáticos. El tejido muscular cardíaco es considerado una mezcla de los dos anteriores.
7
Sus células son suaves y fácilmente deformables.
TEJIDO CONECTIVO Difiere de los demás tejidos por su cantidad de sustancia extracelular. Sus células son suaves y fácilmente deformables. La matriz extracelular que contiene el tejido conectivo permite transmitir cargas mecánicas. La composición de la matriz puede ir desde un suave “gel” (e.g: la piel) a la matriz rígida del hueso.
8
TEJIDOS CONECTIVOS Los tejidos conectivos son la agregación de células, fibras y otras macromoléculas que se encuentran incrustadas en una matriz que también puede contener fluido tisular. Las principales fibras en el tejido conectivo son las fibras de colágeno, las reticulares y las elásticas. Su densidad y ordenamiento modifican sus características. El término tejido conectivo denso irregular describe fibras entremezcladas como las de las fascias y el término tejido conectivo denso regular se refiere a tendones, ligamentos y aponeurosis.
9
CONSTITUYENTES DE LOS TEJIDOS CONECTIVOS
Las células La matriz extracelular (incluyendo fibras y matriz de glucoproteínas) Fluido tisular son los elementos estructurales de los tejidos conectivos.
10
CÉLULAS DEL TEJIDO CONECTIVO
Varios tipos de células existen dentro del tejido conectivo y se clasifican en residentes o migratorias. Las primeras son relativamente estables dentro del tejido y su rol es producir y mantener la matriz extracelular. Dentro de las residentes encontramos los fibroblastos, condroblastos y osteoblastos que maduran en condrocitos y osteocitos los dos últimos. Las células migratorias como los macrófagos, monocitos, basófilos, neutrófilos, eosinófilos, linfocitos y células plasmáticas, viajan al tejido por medio de la circulación. Estas células están usualmente asociadas a la reacción del tejido frente a una lesión iniciando y regulando la respuesta inflamatoria e inmune
11
MATRIZ EXTRACELULAR DEL TEJIDO CONECTIVO
Es una mezcla de componentes que incluyen fibras proteínicas (Colágeno y Elastina), Glucoproteínas simples y complejas y fluído tisular
12
COLÁGENO Es la proteína más abundante en el mundo animal y constituye más del 30% del total de proteínas del cuerpo humano. Existen diferentes formas de colágeno y sus fibras están presentes en una variada cantidad en todos los tipos de tejido conectivo del cuerpo. Todas las células clave del tejido conectivo (fibroblastos, condroblastos, condrocitos, osteoblastos y osteocitos) son capaces de producir colágeno
13
La unidad fundamental del colágeno es la molécula de tropocolágeno.
Las fibras de colágeno son proteínas o largas cadenas de aminoácidos con péptidos que los unen. La unidad fundamental del colágeno es la molécula de tropocolágeno. La molécula está compuesta de tres polipéptidos en espiral de cerca de 1000 aminoácidos que se entremezclan en estas cadenas
14
CLASIFICACIÓN DEL COLÁGENO
El colágeno se clasifica de acuerdo a su organización molecular como tipo I, tipo II o tipo III. Más de 20 tipos de colágeno diferentes han sido reportados pero el tipo I se encuentra en la piel, hueso, tendones, ligamentos y córnea y es el más abundante tipo de colágeno en el cuerpo. El colágeno tipo II se encuentra primariamente en el cartílago y el tipo III es el más abundante en el colágeno del tejido conectivo constitutivo de la piel y las paredes de los vasos sanguíneos
15
LAS FIBRAS ELÁSTICAS Son mucho más finas (esbeltas) y extensibles que las fibras de colágeno. Pueden ser estiradas hasta un 150% de su longitud original antes que se rompan. La composición química de las fibras de elastina es parecida a aquella del colágeno
16
COMPLEJO DE GLUCOPROTEÍNAS
Junto con las fibras de colágeno y elastina, se encuentra otra fracción proteíca dentro de la matriz extracelular llamada complejo de glucoproteínas. Un proteglicano es una proteína a la cual se unen cadenas especializadas carbohidratadas llamadas glucosaminoglicanos. Las glucoproteínas ocupan los espacios entre las fibras y constituyen la base de la sustancia del tejido conectivo
17
EL FLUÍDO TISULAR Es un filtro de la sangre y reside en los espacios intercelulares (intersticio). Ayuda en el transporte de materiales y nutrientes entre los capilares y las células de la matriz extracelular
18
EL HUESO El tejido conectivo especializado conocido como hueso es uno de los tejidos más fuertes y duros del cuerpo humano. El esqueleto protege los órganos vitales, sirve como reserva de minerales, alberga las células hematopoyéticas y provee brazos de palanca desde los cuales los músculos controlan el movimiento. El hueso es una estructura dinámica que se remodela continuamente y responde a las alteraciones de las cargas mecánicas, niveles hormonales y niveles séricos de calcio
19
CLASIFICACIÓN DEL TEJIDO ÓSEO
El tejido óseo se puede clasificar en: Cortical (También llamado compacto) Trabecular (También llamado esponjoso). Aunque tanto el hueso cortical como el trabecular tienen las mismas células, su comportamiento mecánico y sus respuestas adaptativas son distintas.
20
TEJIDO ÓSEO COMPACTO El tejido óseo compacto contiene pocos espacios. Forma la capa externa de todos los huesos del cuerpo y la mayor parte de la diáfisis de los huesos largos. El hueso compacto proporciona protección y sostén y ayuda a que los huesos largos resistan la tensión del peso que gravita sobre ellos. El hueso compacto tiene una estructura en anillos concéntricos lo que proporciona dureza y resistencia mecánica
21
TEJIDO ÓSEO ESPONJOSO El tejido óseo esponjoso está compuesto por laminillas dispuestas en un encaje irregular de finas capas de hueso llamadas trabéculas. Los espacios entre las trabéculas de algunos huesos están ocupados por la médula ósea roja productora de células sanguíneas. Los vasos sanguínos del periostio penetran a través del hueso esponjoso.
22
EL CARTÍLAGO El cartílago contiene los elementos básicos del tejido conectivo: células, matriz extracelular, fluído tisular y macromoléculas. Se pueden encontrar tres clases de cartílago: Hialino, elástico y fibrocartílago. Ninguno de los tres tipos de cartílago posee vasos sanguíneos intrínsecos, nervios o vasos linfáticos. La ausencia de circulación en el cartílago hace que los condrocitos tengan que recibir y remover nutrientes por difusión
23
CARTÍLAGO HIALINO Toma su nombre por su apariencia transparente. La superficie de la mayoría de las articulaciones, la porción anterior de las costillas y áreas del sistema respiratorio como la tráquea, la nariz y bronquios, están compuestas por cartílago hialino. Las fibras de colágeno dan al cartílago hialino su fuerza tensil. El principal colágeno en el cartílago hialino es el tipo II y la principal estructura al lado del colágeno en el cartílago son los preoteoglicanos
24
CARTÍLAGO ELÁSTICO Se encuentra en las orejas, la epiglotis, porciones de la laringe y el tubo de eustaquio. Posee una gran capacidad flexible y su matriz contiene fibras elásticas y de colágeno. La matriz es más amarilla en este cartílago a causa del alto porcentaje de fibras elásticas.
25
FIBROCARTÍLAGO Es fuerte y flexible por la combinación exclusiva y única de sus fibras de colágeno y matriz extracelular. El fibrocartílago se encuentra en muchas áreas del cuerpo, especialmente en puntos de estrés donde la fricción puede ser problemática. Es esencialmente un material de unión entre el cartílago hialino y otros tejidos conectivos como ligamentos, tendones y discos intervertebrales
26
TIPOS DE FIBROCARTÍLAGO
Fibrocartílago interarticular Fibrocartílago conector Fibrocartílago estratiforme Fibrocartílago cirfunferencial
27
FIBROCARTÍLAGO CONECTOR
Se encuentra en articulaciones con movimiento limitado y su mejor ejemplo son los discos intervertebrales. Permite a las superficies articulares adyacentes moverse ligeramente con respecto a otras.
28
TENDONES Y LIGAMENTOS En los tendones, ligamentos y aponeurosis, el tejido conectivo está principalmente compuesto de fibras y matriz extracelular. Estos tejidos tienen una gran fuerza tensil pero soportan estiramientos en una sola dirección, esto es, a lo largo de la fuerza tensil generada paralelamente a la orientación de sus fibras.
29
Los fascículos se agrupan para formar el tendón propiamente dicho.
TENDONES Las fibras se reúnen en fascículos unidos entre sí por un tejido conectivo más suave o suelto denominado endotenon, el cual permite un movimiento relativo de los fascículos de colágeno soportando los vasos sanguíneos, nervios y fluído linfático. Los fascículos se agrupan para formar el tendón propiamente dicho.
30
INSERCIÓN DEL TENDÓN EN EL HUESO
La inserción del tendón en el hueso involucra una transición gradual de tendón a fibrocartílago, luego a fibrocartílago mineralizado y finalmente hueso. Algunas de las fibras de colágeno del tendón pasan a través del fibrocartílago mineralizado y dentro del hueso subcondral. Estas fibras penetrantes reciben el nombre de fibras de Sharpey. Un anclaje adicional lo dan otras fibras del tendón que se mezclan con el periostio
31
LA UNIÓN MIOTENDINOSA El final opuesto del tendón es una región especializada de pliegues de membranas longitudinales que incrementan la superficie del área y reducen el estrés durante la transmisión de la fuerza contráctil denominada unión miotendinosa. La fuerza de la unión miotendinosa depende de las propiedades de las estructuras y de la orientación de las fuerzas que cruzan esta unión. Las fuerzas que cruzan la unión en tijera con la fuerza siendo paralela a la superficie de la membrana son más fuertes que las uniones con un gran componente tensil perpendicular a la membrana
32
LOS LIGAMENTOS Los ligamentos son estructuras de tejido conectivo regular y denso que unen un hueso a otro hueso. La primera función de los ligamentos, como la de los tendones, es resistir la fuerza tensil a lo largo de una línea de fibras de colágeno. Los ligamentos reciben sus nombres y se clasifican por sus sitios de inserción (coracoacromial), forma (deltoideo), función (capsular), posición u orientación (colateral, cruzado), posición relativa a la cápsula articular (extrínsecos e intrínsecos) y su composición (elástico)
33
GEOMETRÍA E INSERCIÓN DE LOS LIGAMENTOS
La geometría de los haces de fibras de colágeno en los ligamentos es específica a la función del ligamento. Se pueden orientar en paralelo, oblícuas o en espiral. La inserción del ligamento al hueso puede ser directa o indirecta. La unión directa es comparable a las fibras de colágeno especializadas denominadas de Sharpey que unen el tendón al hueso. En la ruta indirecta, las fibras de colágeno se mezclan con el periostio del hueso.
34
MÚSCULO ESQUELÉTICO Los músculos esqueléticos son admirables diseños de la naturaleza, verdaderos “motores” capaces de convertir energía química en trabajo mecánico con un razonable grado de eficiencia y mínima polución. Pueden adaptarse a diferentes demandas cambiando su tamaño, y hasta cierto punto sus características funcionales.
35
LA FIBRA MUSCULAR La fibra muscular es una célula polinucleada especializada en la generación de tensión. El espesor de las fibras musculares varía en los diferentes músculos o incluso en el mismo músculo (Astrand, P y Rodahl K. 1992). En muchos músculos, la longitud de la fibra se extiende a lo largo de todo el recorrido del músculo, es decir, se proyecta desde un tendón hasta otro. Las miofibrillas constituyen la porción contráctil de la fibra muscular y se disponen paralelamente entre si a lo largo de la fibra muscular. Estas estructuras están formadas por una serie de unidades repetidas denominadas sarcómeros.
36
LOS SARCÓMEROS Los sarcómeros son estructuras que constituyen la unidad básica de una miofibrilla. Se encuentran unidos continuadamente uno de otros a partir de una estrecha membrana denominada línea Z. En la región medial del sarcómero, existe una zona denominada A, en la cual puede encontrarse tanto actina como miosina. Las bandas claras se denominan bandas I, en esta región sólo pueden encontrarse filamentos de actina. En la banda A se encuentran los filamentos de miosina que al producirse la excitación neural, provocan el acortamiento del sarcómero y la contracción muscular por consiguiente.
37
UNIDAD MOTORA La totalidad de las fibras musculares inervadas por una misma motoneurona alfa, que se ubica en el asta anterior de la médula, se denomina “unidad motora”. Existen dos grandes tipos de neuronas que pueden formar parte de las unidades motoras: Neuronas de gran tamaño que inervan entre 300 y 500 fibras musculares diferentes. Estas neuronas presentan una frecuencia de emisión del impulso nervioso que puede variar entre Hz, es decir, entre 25 y 100 impulsos nerviosos por segundo. Neuronas de escaso tamaño que inervan sólo entre 10 y 180 fibras musculares diversas. Su frecuencia de descarga de impulsos nerviosos varía entre 10 y 25 Hz, es decir, entre 10 y 25 impulsos nerviosos por segundo.
38
CARACTERÍSTICAS FUNCIONALES DE LOS DIFERENTES TIPOS DE FIBRAS MUSCULARES
Para el músculo esquelético humano, hay estudios que indican que el tiempo hasta la tensión pico en una contracción isométrica máxima es de 80 a 100 milisegundos para las fibras tipo I, mientras que para las fibras de contracción rápida tipo II, este tiempo se reduce aproximadamente 40 milisegundos, siendo menor el tiempo para las fibras tipo II b que para los fibras tipo II a. Una cuestión muy importante a considerar es que no existen diferencias entre la cantidad de fuerza muscular que una fibra rápida puede realizar en comparación con una fibra lenta, si tuvieran el mismo contenido de proteínas de miosina y actina. Por ello, la principal diferencia desde un punto de vista funcional entre distintos tipos de fibras, es la velocidad de acortamiento que se produce y no la fuerza que cada una ellas puede ejercer. La clasificación del tipo de fibras se realiza mediante la diferenciación histoquímica de la enzima ATPasa miofibrilar.
Presentaciones similares
© 2025 SlidePlayer.es Inc.
All rights reserved.