La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Estructuras e Informática

Presentaciones similares


Presentación del tema: "Estructuras e Informática"— Transcripción de la presentación:

1 Estructuras e Informática

2 Definición de estructura
“Conjunto tridimensionales de elementos materiales ordenados y conectados, que interaccionan entre si, con el fin de soportar cargas de manera estable, manteniendo su forma a lo largo del tiempo.”

3 ¿Qué es portante y qué no?

4 Elementos de una estructura

5 Materiales

6 Aplicaciones

7 Entrepisos y Cubiertas

8 Vigas y dinteles

9 Columnas

10 Ampliaciones

11 Acciones que inciden sobre la estructura
Origen Acción de gravedad Acción de vientos Acción de sismos Superficie de incidencia Cargas distribuidas Cargas distribuidas superficialmente Cargas concentradas Variación en el tiempo Permanente (Peso propio) Sobrecargas Accidentales

12 Fuerzas “Toda causa exterior capaz de modificar el estado de reposo o movimiento de un cuerpo” Parámetros: Intensidad (kg, T) Dirección: recta de acción Sentido Punto de aplicación

13 Par de Fuerzas “2 fuerzas de igual intensidad, sentido contrario, recta de acción paralelas separadas por una distancia” F1 d F2 M = F x d Parámetros: Momento y Sentido

14 Jose sistemas de fuerzas

15 Vínculos - Apoyos “Cuando a un cuerpo, inicialmente en reposo, se le aplican cargas y permanece en reposo, se dice que esta en equilibrio estático” “A toda acción le corresponde una reacción igual y contraria”

16 Vínculos - Apoyos Restringe 3° de libertad Restringe 2° de libertad

17 Esquema y esquema estático

18 Análisis de cargas Ejemplo entrepiso Carga distribuida:
Cargas permanentes (g): piso mosaico, carpeta, contrapiso, bovedilla, cielorraso Sobrecarga (p): depende del uso q=g+p (kg/m) Peso propio (pp) De las viguetas, qv = pe x distancia = kg/m Carga puntual (columnas, vigas, tabiques) q=Pe x largo x e x h = kg

19 Cálculo de reacciones de vínculos
Σx=0 Σy= Hay dos incógnitas para resolverlo se usa el sig. paso ΣM= Tomar los momentos respecto a una de las reacciones

20 Ejemplo

21 Esfuerzos

22 Diagramas

23 Diagramas

24 Características geométricas
Área o superficie: F (cm²) Momento de inercia: J (cm4) “es la relación entre el área de una sección y su posición respecto a un eje” “representa la resistencia que ofrece la sección a la deformación por flexión”

25 Características geométricas
Módulo resistente W (cm³) “resistencia cuando esta sometida a un esfuerzo de flexión”

26 Características geométricas
Radio de giro i (cm) “relación inversamente proporcional entre la esbeltez y la resistencia al pandeo”

27 Entrepiso - Dimensionado

28 Entrepiso - Dimensionado
q= sobrecarga + peso permanente Cálculo de momento: M= q.l² / 8 Cálculo de reacciones: R= q.l / 2 Peso específico del entablonado 900kg/m³ e= 1” o ¾”

29 Entrepiso - Dimensionado
Cálculo de sección: Ʋadm= Ʋf/Ʋ F-22 Ʋadm=2200/1,6 Ʋadm = M (kgcm (multiplicar por 100)) Ʋadmadera= 75 Wx (cm³) Wx= M/Ʋadm Si es metálica se entra a tabla con el Wx y se adopta un perfil

30 Entrepiso - Dimensionado
Si es madera, Wx=Jx/yx = (b.h³/12) / (h/2) = b.h²/6 Si consideramos una relación de lados: Wx=(h/n.h²)/6 = h³ /6n Despejando: H=3√(6n.Wx) B=h/3 b h

31 Entrepiso - Dimensionado

32 Entrepiso - Dimensionado
Verificación de la flecha Si la fuerza es distribuida f= 5/384 . q.l⁴ / Jx.E ≤ fadm Si la fuerza es centrada f= 1/48 . q.l⁴ / Jx.E ≤ fadm Siendo E=módulo resistente Emadera= Emetal= Fadm= l (cm) 300 o 400

33 Entrepiso - Viguetas Elegir la serie según la luz que tengamos entre los apoyos

34 Entrepiso - Viguetas Elegir el perfil según la serie y el Mmax que tengamos.

35 Viga - Dimensionado q= sobrecarga (descarga del entrepiso) + peso propio (5% de la carga distribuida) Sobrecarga q.Luz losa / 2 O ∑P / l Cálculo de momento: M= q.l² / 8 Cálculo de reacciones: R= q.l / 2

36 Viga - Dimensionado Cálculo de sección: Ʋadm= Ʋf/Ʋ F-22 Ʋadm=2200/1,6 Ʋadm = M (kgcm) Wx (cm³) Wx= M/Ʋadm Si es metálica se entra a tabla con el Wx y se adopta un perfil

37 Viga - Dimensionado

38 Viga - Dimensionado Si es madera, Wx=Jx/yx = (b.h³/12) / (h/2) = b.h²/6 Si consideramos una relación de lados: Wx=(h/n.h²)/6 = h³ /6n Despejando: H=3√(6n.Wx) B=h/3 b h

39 Viga - Dimensionado Verificación de la flecha Si la fuerza es distribuida f= 5/384 . q.l⁴ / Jx.E ≤ fadm Si la fuerza es centrada f= 1/48 . q.l⁴ / Jx.E ≤ fadm Siendo E=módulo resistente Emadera= Emetal= Fadm= l (cm) 300 o 400

40 Dintel - Dimensionado Sobrecarga losa = 300kg/m² Ppmamp=1600kg/m³
Ppentrepiso=1800kg/m³ Ʋadm mamp=8kg/cm²

41 Dintel - Dimensionado Análisis de cargas
qmamp= Sup . espesor . Peso propio Largo del vano qep= Sup de losa . Largo vano .espesor . Ppropio qsc= Sup de losa . Largo vano .sobrecarga Qtotal= qmamp + qentrepiso + qsobrecarga

42 Dintel - Dimensionado Cálculo de reacciones y momento Ra=Rb= q.l /2
M=q.l² / 8 Verificación a la flexión Wnec ≥ Mmax/ʋ Se entra a tabla y se selecciona el perfil

43 Dintel - Dimensionado Verificación de la flecha
Si la fuerza es distribuida f= 5/384 . q.l⁴ / Jx.E ≤ fadm Emetal= Fadm= l (cm) 300 o 400 Verificar y dimensionar apoyos Ra / 2.b.ʋadmmamp ≤ l de apoyo Tamaño total del dintel = lvano l de apoyo

44 Columnas - Dimensionado
Pandeo = esbeltez “Problema de inestabilidad que provoca la rotura de las piezas esbeltas cargadas axilmente bajo tensiones de compresión”} Esbeltez: relación entre longitud y radio de giro Λ = Lc / i

45 Columnas - Dimensionado
Datos P (fuerza centrada) Lc ʋadm Cálculo de P R= q.l / 2

46 Columnas - Dimensionado
Luz de cálculo Lc = β. L real

47 Columnas - Dimensionado
Ɛ: coeficiente de esbeltez ideal. Relaciona la luz con la forma de la pieza Ɛ= √ (Lc² . Ʋadm . Z / P) obtenemos W de tabla Z = coeficiente de forma Z=12 Z=4 Z= 10 a 12 Z= 3 a 4

48 Columnas - Dimensionado
Cálculo de sección F = W. P / ʋadm Adoptar perfil según tabla Verificación de esbeltez Λ = Lc / i de tabla obtengo W ʋ = P . W / Freal ≤ ʋadm


Descargar ppt "Estructuras e Informática"

Presentaciones similares


Anuncios Google