La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Tema 12: Distribuciones Normal y Exponencial Prof. L. Lugo

Presentaciones similares


Presentación del tema: "Tema 12: Distribuciones Normal y Exponencial Prof. L. Lugo"— Transcripción de la presentación:

1 Tema 12: Distribuciones Normal y Exponencial Prof. L. Lugo
Estadística Tema 12: Aproximaciones a la Distribución Normal. Distribución Exponencial Estadística. UNITEC Tema 12: Distribuciones Normal y Exponencial Prof. L. Lugo

2 Teorema del Límite Central
Dada una v.a. cualquiera, si extraemos muestras de tamaño n, y calculamos los promedios muestrales, entonces: Dichos promedios tienen distribución aproximadamente normal; La media de los promedios muestrales es la misma que la de la variable original. La desviación típica de los promedios disminuye en un factor “raíz de n” (error estándar). Las aproximaciones anteriores se hacen exactas cuando n tiende a infinito. Este teorema justifica la importancia de la distribución normal. Sea lo que sea que midamos, cuando se promedie sobre una muestra grande (n>30) nos va a aparecer de manera natural la distribución normal. Estadística. UNITEC Tema 12: Distribuciones Normal y Exponencial Prof. L. Lugo

3 Función de Densidad Está caracterizada por dos parámetros: La media, μ, y la desviación típica, σ; además del tamaño de la muestra. Estadística. UNITEC Tema 12: Distribuciones Normal y Exponencial Prof. L. Lugo

4 Estandarización Dada una variable de media μ, desviación típica σ y muestras de tamaño n, se denomina valor estandarizado,z, de una media muestral, a la distancia (con signo) con respecto a la media poblacional, medido en desviaciones típicas en razón a la raiz cuadrada del tamaño muestral, es decir Nos permite comparar entre dos muestras de dos distribuciones normales diferentes, para saber cuál de las dos es más extremo. También podemos hacer inferencias acerca de las medias de las respectivas poblaciones, etc. Estadística. UNITEC Tema 12: Distribuciones Normal y Exponencial Prof. L. Lugo

5 Ejemplo 1: Cobertura de una Pintura
Si una lata de 1 galón de pintura cubre en promedio 513,3 pies cuadrados con una desviación estándar de 31,5 pies cuadrados, ¿cuál es la probabilidad de que el área media cubierta por una muestra de 40 de estas latas de 1 galón se halle en un punto entre y pies cuadrados?. Solución: Llamemos X a la v.a. que define el área de cobertura, en pies cuadrados, de un galón de la pintura. De esta v.a. se desconoce su distribución; sin embargo en el problema se habla de cobertura promedio y la muestra es de 40; es decir, lo suficientemente grande como para asumir que, independientemente de la distribución de la v.a. X, su media muestral se distribuye normal. Por tanto Debemos hallar : Estadística. UNITEC Tema 12: Distribuciones Normal y Exponencial Prof. L. Lugo

6 Ejemplo 1: Cobertura de una Pintura
Para ello debemos estandarizar la media muestral en los valores 510 y y, con la ayuda de la tabla, respondemos la interrogante planteada. Estadística. UNITEC Tema 12: Distribuciones Normal y Exponencial Prof. L. Lugo

7 Ejemplo 1: Cobertura de una Pintura
Para obtener esa probabilidad debemos acudir a la tabla de probabilidades de la función normal estándar, recordando que esta tabla nos proporciona probabilidades acumuladas; es decir, el caso que nos ocupa lo resolvemos: La cobertura promedio de un galón de pintura tiene una probabilidad de 0,6569 de estar entre 510 y 520 pies cuadrados. Estadística. UNITEC Tema 12: Distribuciones Normal y Exponencial Prof. L. Lugo

8 Ejemplo 2: Barriles de Petróleo Crudo
Supóngase que el número de barriles de petróleo crudo que produce un pozo diariamente es una variable aleatoria con una distribución no especificada. Si se observa la producción en 64 dias, seleccionados en forma aleatoria, y se sabe que la desviación típica del número de barriles por dia es 16, determínese la probabilidad de que la media muestral se encuentre a no mas de cuatro barriles del valor verdadero. Solución: Llamemos X a la v.a. que define el número de barriles producidos por dia. De esta v.a. se desconoce su distribución; sin embargo en el problema se habla de una muestra de 64 observaciones; es decir, lo suficientemente grande como para asumir que, independientemente de la distribución de la v.a. X, su media muestral se distribuye normal. Por tanto Debemos hallar : Estadística. UNITEC Tema 12: Distribuciones Normal y Exponencial Prof. L. Lugo

9 Ejemplo 2: Barriles de Petróleo Crudo
Para ello debemos estandarizar la variable x en los valores   4 y, con la ayuda de la tabla, respondemos la interrogante planteada. Estadística. UNITEC Tema 12: Distribuciones Normal y Exponencial Prof. L. Lugo

10 Ejemplo 2: Barriles de Petróleo Crudo
Para obtener esa probabilidad debemos acudir a la tabla de probabilidades de la función normal estándar, recordando que esta tabla nos proporciona probabilidades acumuladas; es decir, el caso que nos ocupa lo resolvemos: Con una probabilidad de 0,9548 la media muestral se encuentra a no mas de cuatro bariles de petróleo por dia del valor real de la producción promedio diaria. Estadística. UNITEC Tema 12: Distribuciones Normal y Exponencial Prof. L. Lugo

11 Aproximación de una Binomial a una Normal
La distribución binomial es una forma límite de la distribución de Poisson cuando n es grande (n  50) y p es pequeño. Cuando n es grande; pero p no tiene un valor cercano a cero, la distribución normal proporciona una mejor aproximación. TEOREMA DEL LÍMITE DE DEMOIVRE – LAPLACE Si X es una variable aleatoria que se distribuye binomial con parámetros n y p, y n es grande; entonces X posee una distribución aproximadamente normal Esta aproximación es buena cuando n es grande y se cumple que: Estadística. UNITEC Tema 12: Distribuciones Normal y Exponencial Prof. L. Lugo

12 Estandarización Dada una variable X distribuida binomial con parámetros n y p, se denomina valor estandarizado, z, a la distancia (con signo) con respecto a la media poblacional, medido en desviaciones típicas, es decir Para tamaños de muestra grandes, nos permite calcular, de forma sencilla, aproximadamente valores de probabilidad que no serían fáciles de calcular usando la distribución binomial. Estadística. UNITEC Tema 12: Distribuciones Normal y Exponencial Prof. L. Lugo

13 Ejemplo 3: Preferencia por un Candidato
Una organización política planea llevar a cabo una encuesta para detectar la preferencia de los votantes con respecto a los candidatos A y B que ocuparán un puesto en la administración pública. Supóngase que se toma una muestra aleatoria de 1000 ciudadanos. ¿Cuál es la probabilidad de que o mas de los votantes indiquen una preferencia por el candidato A si la población, con respecto a los candidatos, se encuentra igualmente dividida?. Solución: Sea X la v.a. que define el número de ciudadanos que prefieren al candidato A. Esta v.a. tiene distribución binomial; sin embargo dado que p = ½ y la muestra es de 1000; es decir, es una muestra grande podemos usar una aproximación a la distribución normal para resolver el problema. Por tanto Debemos hallar : Estadística. UNITEC Tema 12: Distribuciones Normal y Exponencial Prof. L. Lugo

14 Ejemplo 3: Preferencia por un Candidato
Para ello debemos estandarizar la variable x en el valor 550 y, con la ayuda de la tabla, respondemos la interrogante planteada. Estadística. UNITEC Tema 12: Distribuciones Normal y Exponencial Prof. L. Lugo

15 Ejemplo 3: Preferencia por un Candidato
Para obtener esa probabilidad debemos acudir a la tabla de probabilidades de la función normal estándar, recordando que esta tabla nos proporciona probabilidades acumuladas; es decir, el caso que nos ocupa lo resolvemos: La probabilidad de que 550 o mas votantes manifiesten una preferencia por el candidato A en la encuesta es de 0,0008. Estadística. UNITEC Tema 12: Distribuciones Normal y Exponencial Prof. L. Lugo

16 Aproximación de una Poisson a una Normal
La distribución de Poisson se desarrolla como el límite de una distribución binomial cuando el número de ensayos tiende a infinito. Por tanto no es de extrañar que la distribución normal pueda usarse para aproximar las probabilidades de una variable aleatoria Poisson. Si X es una variable aleatoria que se distribuye Poisson con parámetro ; entonces X posee una distribución aproximadamente normal Esta aproximación es buena cuando se cumple que: Estadística. UNITEC Tema 12: Distribuciones Normal y Exponencial Prof. L. Lugo

17 Estandarización Dada una variable X distribuida poisson con parámetro , se denomina valor estandarizado, z, a la distancia (con signo) con respecto a la media poblacional, medido en desviaciones típicas, es decir Para tamaños de muestra grandes, nos permite calcular, de forma sencilla, aproximadamente valores de probabilidad que no serían fáciles de calcular usando la distribución poisson. Estadística. UNITEC Tema 12: Distribuciones Normal y Exponencial Prof. L. Lugo

18 Ejemplo 4: Partículas de Asbesto
Supóngase que el número de partículas de asbesto en un centímetro cuadrado de polvo tiene una distribución poisson con media Si se analiza un centímetro cuadrado de polvo, ¿cuál es la probabilidad de encontrar menos de 950 partículas de asbesto?. Solución: Llamemos X a la v.a. que define el número de partículas de asbesto por cm2. X se distribuye poisson; sin embargo su escala de medición complica la aplicación de la función de distribución de poisson, y por tanto lo recomendable es aproximar usando la distribución normal. Debemos hallar : P(x < 950) Estadística. UNITEC Tema 12: Distribuciones Normal y Exponencial Prof. L. Lugo

19 Ejemplo 4: Partículas de Asbesto
P(x < 950) Para ello debemos estandarizar la variable x en el valor 950 y, con la ayuda de la tabla, respondemos la interrogante planteada. Estadística. UNITEC Tema 12: Distribuciones Normal y Exponencial Prof. L. Lugo

20 Ejemplo 4: Partículas de Asbesto
P(x < 950) Para obtener esa probabilidad debemos acudir a la tabla de probabilidades de la función normal estándar, recordando que esta tabla nos proporciona probabilidades acumuladas; es decir, el caso que nos ocupa lo resolvemos: Hay una probabilidad de 0,0571 de que se encuentren menos de 950 partículas de asbesto en un centímetro cuadrado de polvo. Estadística. UNITEC Tema 12: Distribuciones Normal y Exponencial Prof. L. Lugo

21 Distribución Exponencial
Supóngase por un instante que se define una variable aleatoria con distribución de poisson, que representa el número de fallas en determinada longitud de un alambre de cobre. En el tema 10 estudiamos el comportamiento de esta v.a.; pero en ocasiones tambien es de interés estudiar la distancia entre estas fallas. Sea la variable aleatoria X la longitud desde el punto inicial del alambre hasta el sistio donde se encuentra una falla. Como es de esperarse la distribución de X puede obtenerse a partir del conocimiento de la distribución del número de fallas; es decir, nos planteamos la siguiente relación: la distancia hasta la primera falla es mayor que x si y solo si no hay fallas en esa longitud x. La obtención de la distribución de X depende solo de la hipótesis de que el número de fallas sigue un proceso de Poisson. Asimismo, el punto de partida de X no importa, ya que la probabilidad del número de fallas en un intervalo de un proceso de poisson depende solo de la longitud del intervalo y no de la posición. Estadística. UNITEC Tema 12: Distribuciones Normal y Exponencial Prof. L. Lugo

22 Función de Densidad Está caracterizada por el parámetro de poisson: .
Estadística. UNITEC Tema 12: Distribuciones Normal y Exponencial Prof. L. Lugo

23 Características de la Gráfica
Mientras mayor es el valor de  mayor es el sesgo de la gráfica. Es una gráfica siempre positiva, con comportamiento asintótico con respecto al eje de las abscisas y con un corte en el eje de las ordenadas para el valor x = 0. Estadística. UNITEC Tema 12: Distribuciones Normal y Exponencial Prof. L. Lugo

24 Cálculo de Probabilidades
Las probabilidades en una distribución exponencial representan las áreas bajo la curva entre dos posiciones. Estas se consiguen por integración de la función de densidad; sin embargo por ser una función exponencial, cuya integral es siempre la misma, se tienen expresiones establecidas para el cálculo de probabilidades según: Estadística. UNITEC Tema 12: Distribuciones Normal y Exponencial Prof. L. Lugo

25 Ejemplo 5: Acceso a una Red de Computadores.
En una red de computadoras grande, el acceso de los usuarios al sistema puede modelarse como un proceso Poisson con una media de 25 accesos por hora. Determine: a) la probabilidad de que no haya ningún acceso en un intervalo de 6 minutos, b) la probabilidad de que el tiempo que transcurre hasta el siguiente acceso esté entre 2 y 3 minutos, c) el intervalo de tiempo para el que la probabilidad de que no se presenten accesos al sistema durante ese tiempo sea de 0,90. Sea la va X = tiempo en minutos desde el inicio hasta el primer acceso. a) P(X > 6) Hay una probabilidad de 0,0819 de que no se presente ningún acceso en 6 minutos. Estadística. UNITEC Tema 12: Distribuciones Normal y Exponencial Prof. L. Lugo

26 Ejemplo 5: Acceso a una Red de Computadores.
b) P(2  X  3) Hay una probabilidad de 0,1481 de que el tiempo que transcurre entre accesos esté entre 2 y 3 minutos. c) Se pide el tiempo x para el que P(X > x) = 0,90 Hay una probabilidad de 0,90 de que no se presente ningún acceso en 0,25 minutos. Estadística. UNITEC Tema 12: Distribuciones Normal y Exponencial Prof. L. Lugo

27 Ejemplo 6: Detección de una Partícula Rara.
Sea X el tiempo entre las detecciones de una partícula rara por un contador Geiger. Supóngase que X tiene distribución exponencial con una media de 1,4 minutos. Determine: a) la probabilidad de detectar una partícula durante el lapso de 30 segundos que transcurre desde que se enciende el contador, b) Si el contador permanece encendido por un período de 3 minutos sin detectar una partícula, ¿cuál es la probabilidad de detectar una partícula en los siguientes 30 segundos?. a) P(X  0,5) Hay una probabilidad de 0,50 de detectar una partícula en los primeros 30 segundos de funcionamiento del contador. Estadística. UNITEC Tema 12: Distribuciones Normal y Exponencial Prof. L. Lugo

28 Ejemplo 6: Detección de una Partícula Rara.
b) Si el contador permanece encendido por un período de 3 minutos sin detectar una partícula, ¿halle la probabilidad de detectar una en los siguientes 30 segundos?. Pareciera que debemos calcular: P(X  3,5 / X > 3) ¿? Hay una probabilidad de 0,50 de detectar una partícula en los 30 segundos siguientes a los primeros 3 minutos de funcionamiento del contador sin detectar partículas. Estadística. UNITEC Tema 12: Distribuciones Normal y Exponencial Prof. L. Lugo

29 Ejemplo 7: Espera por un Taxi.
El tiempo entre arribos de los taxis a un cruce muy concurrido tiene una distribución exponencial con media de 10 minutos. Determine: a) la probabilidad de que una persona que esté en el cruce tenga que esperar mas de una hora para tomar un taxi, b) el valor de x de modo tal que la probabilidad de que la persona tenga que esperar menos de x minutos para tomar un taxi sea de 0,50. Sea X = el tiempo en minutos para tomar un taxi en el cruce a) P(X > 60) Hay una probabilidad de 0,025 de que una persona tenga que esperar en el cruce por mas de una hora para tomar un taxi. Estadística. UNITEC Tema 12: Distribuciones Normal y Exponencial Prof. L. Lugo

30 Ejemplo 7: Espera por un Taxi.
b) Se pide el tiempo x para el que P(X < x) = 0,50 Hay una probabilidad de 0,50 de que una persona tenga que esperar menos de 6,93 minutos para tomar un taxi en el cruce. Estadística. UNITEC Tema 12: Distribuciones Normal y Exponencial Prof. L. Lugo


Descargar ppt "Tema 12: Distribuciones Normal y Exponencial Prof. L. Lugo"

Presentaciones similares


Anuncios Google