FÍSICA I GRADO Ingeniería Mecánica Tema 3. Dinámica de la partícula.

Slides:



Advertisements
Presentaciones similares
Tecnologías Informáticas
Advertisements

Tecnologías Informáticas
FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA GRADO I. I. Ingeniería del Software Prof. Norge Cruz Hernández Tema 6. Ondas Electromagnéticas.
FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA GRADO I. I. Ingeniería del Software Prof. Norge Cruz Hernández Tema 2. Circuitos de corriente continua.
Tecnologías Informáticas
Examen parcial: Aula: A :40 Prof. Norge Cruz Hernández
FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA GRADO I. I. Ingeniería del Software Prof. Norge Cruz Hernández Examen parcial: Aula: A :40 – 19:30.
Tecnologías Informáticas
FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA GRADO I. I. Ingeniería del Software Prof. Norge Cruz Hernández Examen parcial: Aula: A :30 – 17:20.
Examen parcial: Aula: A :30 – 17:20
Ingeniería del Software
FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA GRADO I. I. Ingeniería del Software Prof. Norge Cruz Hernández Tema 1. Electrostática (Problemas)
Grupos de prácticas de laboratorio Grupo L19 Profesor: Sara Cruz Barrios Horario: Jueves (alternos) 15: :20. El primer Jueves 9/10/2014 Lugar: Laboratorio.
FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA GRADO I. I. Tecnologías Informáticas Prof. Norge Cruz Hernández Tema 2. Circuitos de corriente continua.
FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA GRADO I. I. Tecnologías Informáticas Prof. Norge Cruz Hernández Examen parcial: Aula: A :40.
FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA GRADO I. I. Ingeniería del Software Prof. Norge Cruz Hernández Tema 1. Electrostática.
FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA GRADO I. I. Tecnologías Informáticas Prof. Norge Cruz Hernández Examen parcial: Aula: A :40.
FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA GRADO I. I. Ingeniería del Software Prof. Norge Cruz Hernández Tema 3. Magnetostática (Problemas)
FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA GRADO I. I. Tecnologías Informáticas Prof. Norge Cruz Hernández Tema 4. Campos variables en el tiempo.
FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA GRADO I. I. Ingeniería del Software Prof. Norge Cruz Hernández Tema 5. Circuitos de corriente alterna.
Examen parcial: Aula: A :30 Prof. Norge Cruz Hernández
FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA GRADO I. I. Tecnologías Informáticas Prof. Norge Cruz Hernández Examen parcial: Aula: A :40.
Examen parcial: Aula: A :40 – 19:30
FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA GRADO I. I. Tecnologías Informáticas Prof. Norge Cruz Hernández Examen parcial: Aula: A :30.
FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA GRADO I. I. Tecnologías Informáticas Prof. Norge Cruz Hernández Tema 1. Electrostática.
FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA GRADO I. I. Ingeniería del Software Prof. Norge Cruz Hernández Tema 3. Magnetostática (Problemas)
FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA GRADO I. I. Ingeniería del Software Prof. Norge Cruz Hernández Tema 2. Circuitos de corriente continua (Problemas)
FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA GRADO I. I. Tecnologías Informáticas Prof. Norge Cruz Hernández Examen parcial: Aula: A :30.
FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA GRADO I. I. Tecnologías Informáticas Prof. Norge Cruz Hernández Examen parcial: Aula: A :30.
FÍSICA I GRADO Ingeniería Mecánica
FÍSICA I GRADO Ingeniería Mecánica Prof. Norge Cruz Hernández Tema 3. Dinámica de la partícula.
FÍSICA I GRADO Ingeniería Mecánica Prof. Norge Cruz Hernández Tema 3. Dinámica de la partícula. (Problemas)
FÍSICA I GRADO Ingeniería Mecánica
FÍSICA I GRADO Ingeniería Mecánica Prof. Norge Cruz Hernández Tema 3. Dinámica de la partícula.
Examen parcial: Aula: :15 FÍSICA I GRADO
FÍSICA I GRADO Ingeniería Mecánica Prof. Norge Cruz Hernández Examen parcial: Aula: :15 Cinemática de la partícula, Dinámica de la partícula.
FÍSICA I GRADO Ingeniería Mecánica Tema 3. Dinámica de la partícula.
FÍSICA I GRADO Ingeniería Mecánica Prof. Norge Cruz Hernández Tema 3. Dinámica de la partícula.
FÍSICA I GRADO Ingeniería Mecánica Prof. Norge Cruz Hernández Tema 3. Dinámica de la partícula. (Problemas)
FÍSICA I GRADO Ingeniería Mecánica
FÍSICA I GRADO Ingeniería Mecánica Tema 6. Mecánica de fluidos.
Examen parcial: Aula: :15 FÍSICA I GRADO
FÍSICA I GRADO Ingeniería Mecánica Tema 3. Dinámica de la partícula.
Examen parcial: Aula: :15 FÍSICA I GRADO
Examen parcial: Aula: :30 FÍSICA I GRADO
FÍSICA I GRADO Ingeniería Mecánica Prof. Norge Cruz Hernández Examen parcial: Aula: :15 Cinemática de la partícula, Dinámica de la partícula.
FÍSICA II GRADO Ingeniería Mecánica
FÍSICA II GRADO Ingeniería Mecánica
FÍSICA II GRADO Ingeniería Mecánica Prof. Norge Cruz Hernández Clases de Laboratorio Grupos: L11 y L9 Asistir todos los alumnos que todavía no.
FÍSICA II GRADO Ingeniería Mecánica Prof. Norge Cruz Hernández Clases de Laboratorio Grupos: L11 y L9 Asistir todos los alumnos que todavía no.
FÍSICA I GRADO Ingeniería Mecánica Prof. Norge Cruz Hernández Tema 2. Cinemática de la partícula.
FÍSICA I GRADO Ingeniería Mecánica Tema 2. Cinemática de la partícula
FÍSICA II GRADO Ingeniería Mecánica
FÍSICA II GRADO Ingeniería Mecánica
FÍSICA II GRADO Ingeniería Mecánica
FÍSICA I GRADO Ingeniería Mecánica Tema 3. Dinámica de la partícula.
FÍSICA I GRADO Ingeniería Mecánica Tema 3. Dinámica de la partícula.
Examen parcial: Aula: :15 FÍSICA I GRADO
FÍSICA II GRADO Ingeniería Mecánica
FÍSICA I GRADO Ingeniería Mecánica Tema 3. Dinámica de la partícula.
FÍSICA II GRADO Ingeniería Mecánica
FÍSICA II GRADO Ingeniería Mecánica
FÍSICA I GRADO Ingeniería Mecánica Tema 3. Dinámica de la partícula.
FÍSICA II GRADO Ingeniería Mecánica
Examen parcial (M1 y M2): Aula: :15 FÍSICA II GRADO
FÍSICA II GRADO Ingeniería Mecánica
Examen parcial (M1): Aula: :00 FÍSICA II GRADO
Examen parcial (M1 y M2): Aula: :15 FÍSICA II GRADO
Examen parcial: Aula: :15 FÍSICA I GRADO
Transcripción de la presentación:

FÍSICA I GRADO Ingeniería Mecánica Tema 3. Dinámica de la partícula. Escuela Politécnica Superior Universidad de Sevilla FÍSICA I GRADO Ingeniería Mecánica Tema 3. Dinámica de la partícula. Prof. Norge Cruz Hernández

Tema 3. Dinámica de la partícula. 3.1 Introducción 3.2 Leyes de Newton. 3.3 Interacciones fundamentales de la naturaleza. 3.4 Fuerzas de contacto. Rozamiento. 3.5 Fuerzas elásticas. Ley de Hooke. 3.6 Momentos lineal y angular. Leyes de conservación. 3.7 Trabajo y potencia. Teorema de la energía cinética. 3.8 Fuerzas conservativas. Energía potencial. 3.9 Teorema de la conservación de la energía mecánica.

Bibliografía Clases de teoría: - Física Universitaria, Sears, Zemansky, Young, Freedman ISBN: 970-26-0511-3, Ed. 9 y 11. Clases de problemas: -Problemas de Física General, I. E. Irodov Problemas de Física General, V. Volkenshtein Problemas de Física, S. Kósel Problemas seleccionados de la Física Elemental, B. B. Bújovtsev, V. D. Krívchenkov, G. Ya. Miákishev, I. M. Saráeva. Libros de consulta: Problemas de Física, Burbano, Burbano, Gracia. Resolución de problemas de física, V.M. Kirílov.

Movimiento rotacional. cantidad de movimiento angular

Si Gervasio Deferr no está tocando el suelo, ejercicio de suelo plata en Pekín Si Gervasio Deferr no está tocando el suelo, ¿cómo puede alterar su rapidez de rotación?

Los helicópteros de una hélice horizontal deben tener otra en vertical para que no giren buscando conservar el momento angular.

Los helicópteros de dos hélices horizontal no necesitan otra hélice adicional si estas giran en sentido contraria.

¿Por qué los gatos “siempre” caen de pié?

Movimiento rotacional. Sistema de fuerzas centrales.

El cometa Halley aumenta su velocidad al acercarse al Sol. Órbita del cometa. El cometa Halley aumenta su velocidad al acercarse al Sol.

Cuando la luna realiza un movimiento circular alrededor de la tierra, debe sentir una fuerza centrípeta que le lleva a tener una aceleración centrípeta. La responsable de ello es la Fuerza de Gravedad.

Cuando un niño hace girar una piedra atada a una cuerda, la piedra realiza un movimiento circular y la fuerza centrípeta la realiza la tensión de la cuerda.

3.7 Trabajo y potencia. Teor. energía cinética. Manuel Martínez, capitán del equipo español de Atletismo. Campeón Mundial en pista cubierta: Birmingham 2003 Si conocemos la dependencia de la fuerza en el tiempo de Martínez, entonces podemos conocer la velocidad a la que sale despedido el peso.

Trabajo El trabajo realizado por una fuerza que actúa sobre un cuerpo a lo largo de una trayectoria es:

En el SI de unidades el trabajo se expresa en Joules (“yul”). … en honor al físico inglés del siglo XIX James Prescott Joule.

El trabajo es el área bajo la curva de Fx.