FÍSICA I GRADO Ingeniería Mecánica Tema 3. Dinámica de la partícula.

Slides:



Advertisements
Presentaciones similares
Ingeniería del Software
Advertisements

FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA GRADO I. I. Ingeniería del Software Prof. Norge Cruz Hernández Tema 2. Circuitos de corriente continua.
Tecnologías Informáticas
Examen parcial: Aula: A :40 Prof. Norge Cruz Hernández
FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA GRADO I. I. Ingeniería del Software Prof. Norge Cruz Hernández Examen parcial: Aula: A :40 – 19:30.
Grupos de prácticas de laboratorio Grupo L19 Profesor: Sara Cruz Barrios Horario: Jueves (alternos) 15: :20. El primer Jueves 9/10/2014 Lugar: Laboratorio.
Tecnologías Informáticas
Ingeniería del Software
FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA GRADO I. I. Ingeniería del Software Prof. Norge Cruz Hernández Examen parcial: Aula: A :30 – 17:20.
Examen parcial: Aula: A :30 – 17:20
Tecnologías Informáticas
Grupos de prácticas de laboratorio
FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA GRADO I. I. Ingeniería del Software Prof. Norge Cruz Hernández Tema 1. Electrostática (Problemas)
Grupos de prácticas de laboratorio Grupo L19 Profesor: Sara Cruz Barrios Horario: Jueves (alternos) 15: :20. El primer Jueves 9/10/2014 Lugar: Laboratorio.
FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA GRADO I. I. Tecnologías Informáticas Prof. Norge Cruz Hernández Tema 2. Circuitos de corriente continua.
FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA GRADO I. I. Ingeniería del Software Prof. Norge Cruz Hernández Tema 1. Electrostática.
FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA GRADO I. I. Tecnologías Informáticas Prof. Norge Cruz Hernández Examen parcial: Aula: A :40.
FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA GRADO I. I. Ingeniería del Software Prof. Norge Cruz Hernández Tema 3. Magnetostática (Problemas)
FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA GRADO I. I. Tecnologías Informáticas Prof. Norge Cruz Hernández Tema 4. Campos variables en el tiempo.
FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA GRADO I. I. Ingeniería del Software Prof. Norge Cruz Hernández Tema 5. Circuitos de corriente alterna.
Examen parcial: Aula: A :30 Prof. Norge Cruz Hernández
FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA GRADO I. I. Tecnologías Informáticas Prof. Norge Cruz Hernández Examen parcial: Aula: A :40.
FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA GRADO I. I. Tecnologías Informáticas Prof. Norge Cruz Hernández Examen parcial: Aula: A :30.
Tecnologías Informáticas
FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA GRADO I. I. Tecnologías Informáticas Prof. Norge Cruz Hernández Tema 1. Electrostática.
FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA GRADO I. I. Ingeniería del Software Prof. Norge Cruz Hernández Tema 3. Magnetostática (Problemas)
FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA GRADO I. I. Ingeniería del Software Prof. Norge Cruz Hernández Tema 2. Circuitos de corriente continua (Problemas)
FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA GRADO I. I. Tecnologías Informáticas Prof. Norge Cruz Hernández Examen parcial: Aula: A :30.
FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA GRADO I. I. Tecnologías Informáticas Prof. Norge Cruz Hernández Examen parcial: Aula: A :30.
FÍSICA I GRADO Ingeniería Mecánica
FÍSICA I GRADO Ingeniería Mecánica Prof. Norge Cruz Hernández Tema 3. Dinámica de la partícula.
FÍSICA I GRADO Ingeniería Mecánica Prof. Norge Cruz Hernández Tema 3. Dinámica de la partícula. (Problemas)
FÍSICA I GRADO Ingeniería Mecánica
FÍSICA I GRADO Ingeniería Mecánica Prof. Norge Cruz Hernández Tema 3. Dinámica de la partícula.
Examen parcial: Aula: :15 FÍSICA I GRADO
FÍSICA I GRADO Ingeniería Mecánica Prof. Norge Cruz Hernández Examen parcial: Aula: :15 Cinemática de la partícula, Dinámica de la partícula.
FÍSICA I GRADO Ingeniería Mecánica Tema 3. Dinámica de la partícula.
FÍSICA I GRADO Ingeniería Mecánica Prof. Norge Cruz Hernández Tema 3. Dinámica de la partícula.
FÍSICA I GRADO Ingeniería Mecánica Prof. Norge Cruz Hernández Tema 3. Dinámica de la partícula. (Problemas)
FÍSICA I GRADO Ingeniería Mecánica
FÍSICA I GRADO Ingeniería Mecánica
FÍSICA I GRADO Ingeniería Mecánica Tema 6. Mecánica de fluidos.
Examen parcial: Aula: :15 FÍSICA I GRADO
FÍSICA I GRADO Ingeniería Mecánica Tema 3. Dinámica de la partícula.
Examen parcial: Aula: :15 FÍSICA I GRADO
Examen parcial: Aula: :30 FÍSICA I GRADO
TRABAJO ENERGÍA.
FÍSICA I GRADO Ingeniería Mecánica Prof. Norge Cruz Hernández Examen parcial: Aula: :15 Cinemática de la partícula, Dinámica de la partícula.
FÍSICA II GRADO Ingeniería Mecánica
FÍSICA II GRADO Ingeniería Mecánica
FÍSICA II GRADO Ingeniería Mecánica Prof. Norge Cruz Hernández Clases de Laboratorio Grupos: L11 y L9 Asistir todos los alumnos que todavía no.
FÍSICA II GRADO Ingeniería Mecánica Prof. Norge Cruz Hernández Clases de Laboratorio Grupos: L11 y L9 Asistir todos los alumnos que todavía no.
FÍSICA I GRADO Ingeniería Mecánica Prof. Norge Cruz Hernández Tema 2. Cinemática de la partícula.
FÍSICA I GRADO Ingeniería Mecánica Tema 2. Cinemática de la partícula
FÍSICA II GRADO Ingeniería Mecánica
FÍSICA II GRADO Ingeniería Mecánica
FÍSICA II GRADO Ingeniería Mecánica
FÍSICA I GRADO Ingeniería Mecánica Tema 3. Dinámica de la partícula.
FÍSICA I GRADO Ingeniería Mecánica Tema 3. Dinámica de la partícula.
Examen parcial: Aula: :15 FÍSICA I GRADO
FÍSICA II GRADO Ingeniería Mecánica
FÍSICA I GRADO Ingeniería Mecánica Tema 3. Dinámica de la partícula.
FÍSICA II GRADO Ingeniería Mecánica
FÍSICA II GRADO Ingeniería Mecánica
FÍSICA I GRADO Ingeniería Mecánica Tema 3. Dinámica de la partícula.
Examen parcial (M1 y M2): Aula: :15 FÍSICA II GRADO
FÍSICA II GRADO Ingeniería Mecánica
Examen parcial (M1 y M2): Aula: :15 FÍSICA II GRADO
Examen parcial: Aula: :15 FÍSICA I GRADO
Transcripción de la presentación:

FÍSICA I GRADO Ingeniería Mecánica Tema 3. Dinámica de la partícula. Escuela Politécnica Superior Universidad de Sevilla FÍSICA I GRADO Ingeniería Mecánica Tema 3. Dinámica de la partícula. (Problemas) Prof. Norge Cruz Hernández

Tema 3. Dinámica de la partícula. 3.1 Introducción 3.2 Leyes de Newton. 3.3 Interacciones fundamentales de la naturaleza. 3.4 Fuerzas de contacto. Rozamiento. 3.5 Fuerzas elásticas. Ley de Hooke. 3.6 Momentos lineal y angular. Leyes de conservación. 3.7 Trabajo y potencia. Teorema de la energía cinética. 3.8 Fuerzas conservativas. Energía potencial. 3.9 Teorema de la conservación de la energía mecánica.

Bibliografía Clases de teoría: - Física Universitaria, Sears, Zemansky, Young, Freedman ISBN: 970-26-0511-3, Ed. 9 y 11. Clases de problemas: -Problemas de Física General, I. E. Irodov Problemas de Física General, V. Volkenshtein Problemas de Física, S. Kósel Problemas seleccionados de la Física Elemental, B. B. Bújovtsev, V. D. Krívchenkov, G. Ya. Miákishev, I. M. Saráeva. Libros de consulta: Problemas de Física, Burbano, Burbano, Gracia. Resolución de problemas de física, V.M. Kirílov.

Diagramas de energía. x

Proyectil lanzado verticalmente hacia arriba. Un proyectil es lanzado verticalmente hacia arriba, calcule la altura máxima en función de la velocidad de lanzamiento.

Supongamos que el proyectil lanzado es una pelota de baseball:

Veamos las transformaciones de energía que ocurren en el caso de un competidor de salto largo.

Para aquellos que les gusta jugar con la patineta:

Una partícula de 200 g se deja en reposo en el punto A y se desliza sin rozamiento a lo largo de la superficie de la figura. Determinar la fuerza ejercida por la superficie sobre la partícula cuando pasa a) por el punto B; b) por el punto C.

Un pequeño cuerpo A, de masa 1 kg, “riza el rizo” en una pista circular vertical de 1 m de radio, como se indica en la figura. Calcular la altura mínima desde la que se debe dejar caer para que describa el rizo. (Se suponen nulos los rozamientos y que el cuerpo no está enganchado a la pista).

La condición de velocidad mínima en B es: En el punto B se cumple: La condición de velocidad mínima en B es: Una velocidad mayor implica la existencia de un valor de N distinto de cero.

La energía mecánica se conserva:

Un proyectil de 10 kg pasa por el origen O con una velocidad v0=(60m/s)i cuando estalla dividiéndose en dos fragmentos, A y B, de 4 y 6 kg, respectivamente. Sabiendo que dos segundos después la posición del primer fragmento es A(150m,12m, 24m), hallar la posición del fragmento B en ese instante. Suponga g=9,81 m/s2 j y desprecie la resistencia del aire.

El centro de masas del sistema se moverá como un proyectil, y al cabo de 2 s se encontrará en:

El cuerpo y el resorte. Un resorte se encuentra en posición horizontal, pegado a una pared por uno de sus extremos y a un cuerpo por el otro extremo, que descansa en el suelo. El resorte se comprime una distancia y se deja libre. Calcular la máxima velocidad alcanzada por el cuerpo.

Para aquellos LOCOS que les gusta practicar puenting :