Fundamentos Básicos de Estadística

Slides:



Advertisements
Presentaciones similares
Unidad I. Conceptos Básicos y Estadística Descriptiva
Advertisements

ESTADÍSTICA DESCRIPTIVA
Estadística… Melo- Fernández.
CONTENIDO DE LA UNIDAD CURRICULAR
Técnicas para la elaboración de un instrumento
DEFINICIÓN Y MEDICIÓN DE VARIABLES
VARIABLES Las variables son los aspectos o características
CLASE 1: Recordando algunos conceptos previos de Estadística
FRANCISCO JAVIER RODRÍGUEZ
Capítulo I. Introducción
Unidad I. Conceptos Básicos y Estadística Descriptiva
METODOLOGIA DE LA INVESTIGACION EDUCATIVA I
ESCUELA PROFERSIONAL DE INGENIERÍA EMPRESARIAL.
Conceptos Introductorios de Estadística
estadistica Corporación Unificada Nacional 2015-A Modalidad: Distancia
ESTADISTICA PARA RELACIONES LABORALES
Estadística Descriptiva Tema I. Conceptos Básicos
RECOLECCIÓN DE LA INFORMACIÓN Información primaria y secundaria.
Unidad III. Conceptos Básicos de Estadística
Metodología de la evaluación y estadística aplicada
Tema 1: Introducción a la Estadística.
Taller en Metodología de la Investigación
ESTADISTICA 3 ro. SECUNDARIA.
Universidad Técnica de Ambato.
Tabla de Frecuencia según tipo de tipo de variables
Estadística Descriptiva
ESTADÍSTICA DESCRIPTIVA
ESTADÍSTICA 4° MEDIO
ESTADÍSTICAS DESCRIPTIVA
VARIABLES Descriptores parte I
Obtención, Medición y Representación de Datos Estadística E.S.O.
ESTADÍSTICA DESCRIPTIVA
TABLAS DE FRECUENCIAS Una vez recopilados, tendremos un conjunto de datos que será necesario organizar para extraer información. Lo primero que se hace.
ANÁLISIS DE LA INFORMACIÓN Descripción de los datos
Profesora: Daniela Gaete Pino
Análisis de los datos.
Ms. C. Marco Vinicio Rodríguez
INTRODUCCIÓN A LA ESTADÍSTICA
Objetivos Que deberían saber al terminar esta clase:
Introducción Estadística ¿Qué es la estadística?
CONTENIDO: Estadística Descriptiva e inferencial Muestreo estadístico
CARRERA: Ingeniería INDUSTRIAL
1-1 Capítulo dos Descripción de los datos: distribuciones de frecuencias y representaciones gráficas OBJETIVOS Al terminar este capítulo podrá: UNO Organizar.
TEMA N°2 Nociones básicas de probabilidad y estadística
Estadística Aplicada a la Gestión Empresarial
Laboratorio de Estadística administrativa
Métodos Cuantitativos
ESTADISTICA I Distribución de frecuencias y gráficos
Aplicaciones Estadísticas a las Finanzas Clase 1
Distribución de frecuencias y gráficos
MEDIDAS DE TENDENCIA CENTRAL
Conceptos Básicos y Estadística Descriptiva
Diseño: Mtro Domingo Villavicencio Aguilar
Estadística Conceptos Básicos.
¿Qué es la Estadística? Guayaquil, 20 de Octubre del 2015
DATOS ESTADÍSTICOS.
ESTADÍSTICA DESCRIPTIVA
Por: Agustín Audor Julian Tole
Definición conceptual y operacional de variables
ESCALA DE MEDIDAS DE VARIABLES
REPUBLICA DE VENEZUELA UNIVERSIDAD ALONSO DE OJEDA VICERRECTORADO ACÁDEMICO FACULTAD DE INGENIERIA ESTADISTICA I DISTRIBUCIÓN DE FRECUENCIAS Y GRÁFICOS.
Aplicaciones Estadísticas a las Finanzas Clase 1
Elementos de Estadística descriptiva
Análisis de tablas y gráficos IV medio
Estadística descriptiva
CONCEPTOS BÁSICOS, TABULACIÓN, GRÁFICOS
ELEMENTOS DE ESTADÍSTICA DESCRIPTIVA MIE. GRACIELA ROMERO MERCADO.
Estadística Profesora: Mariela Palma Hernández. Objetivo: Calcular e interpretar las medidas de tendencia central.
Estadística y probabilidad
Transcripción de la presentación:

Fundamentos Básicos de Estadística Ing. Mariugenia Rincon

Definiciones Estadistica. Objetivo e Importancia Clasificación: Descriptiva e Inferencial Población y Muestra Unidad Estadistica. Datos Estadisticos Variable estadística: Tipos Escalas de Medición

Definiciones Estadística: Es una ciencia que aplica el método científico en la recolección, organización, análisis e interpretación de los datos numéricos con el fin de tomar decisiones racionales. Objetivo: Describir los datos; ya sea por medio de medidas (estimadores), gráficos o tablas en las que se puedan apreciar claramente el comportamiento y las tendencias de la información recopilada. Importancia: Al analizar los datos de experimentos los ingenieros aprenden cómo diseñar nuevos productos y procesos importantes, para lo que se necesita de cierto conocimiento estadístico porque éstos permiten diseñar experimentos válidos y obtener conclusiones confiables a partir de los datos obtenidos.

Definiciones Clasificación Estadística Descriptiva: Su finalidad es agrupar y representar la información de forma ordenada, de tal manera que permita identificar rápidamente aspectos característicos del comportamiento de los datos. Se refiere a cualquier tratamiento de datos diseñados para resumir o describir algunas de sus características más importantes, sin intentar deducir nada que escape al alcance de los datos. Estadística Inferencial: Busca dar explicación al comportamiento o hallar conclusiones de un amplio grupo de individuos (población), objetos o sucesos a través del análisis de una pequeña fracción de sus componentes (muestra). Clasificación

Definiciones Población Estadística: Representa la colección completa de elementos o resultados de la información buscada; es el grupo bajo investigación. Es una agrupación de todos los elementos individuales de un tipo específico de interés. Es el conjunto de todos los sucesos susceptibles de aparecer en un problema o investigación y que interesan a la persona que hace el estudio. Las poblaciones pueden ser finitas o infinitas de acuerdo si se conoce el total de los elementos que la componen o no. Población Muestra Muestra: Es un subconjunto de la población, que contiene elementos o resultados que realmente se observan. Es una porción o parte de la población estudiada. Es un subconjunto de mediciones seleccionadas de la población.

Definiciones Unidad Estadística: Corresponde a la entidad mayor o representativa de lo que va a ser objeto específico de estudio en una medición, y se refiere al qué o quién es objeto de interés en una investigación. Datos Estadísticos: Son números que pueden ser comparados, analizados e interpretados, de esta forma el campo del cual son tomados los datos estadísticos se identifican como población o universo. Métodos de Recolección de Datos: Es el medio a través del cual el investigador se relaciona con los participantes o elementos para obtener la información necesaria que le permita lograr los objetivos de la investigación. Para recolectar la información hay que tener presente: Seleccionar un instrumento de medición el cual debe ser valido y confiable para poder aceptar los resultados Aplicar dicho instrumento de medición Organizar las mediciones obtenidas, para poder analizarlos Los métodos más usados son la observación y la encuesta.

Variable Estadística Cualitativa Cuantitativa Discreta Nominal Ordinal Una variable estadística es cada una de las características o cualidades que poseen los individuos de una población. Cualitativa Nominal Ej. El estado civil Ordinal Ej. Orden de llegada Cuantitativa Discreta Ej. Número de hijos Continua Ej. Estatura, peso

Escalas de medición Escalas Nominal Ordinal Razón Intervalo Son variables numéricas cuyos valores representan una categoría o identifican un grupo de pertenencia. Este tipo de variables sólo nos permite establecer relaciones de igualdad/desigualdad entre los elementos de la variable. La asignación de los valores se realiza en forma aleatoria por lo que NO cuenta con un orden lógico Razón Nominal Ordinal Intervalo Escalas Las variables de razón poseen las mismas características de las variables de intervalo, con la diferencia que cuentan con un cero absoluto; es decir, el valor cero (0) representa la ausencia total de medida, por lo que se puede realizar cualquier operación Aritmética (Suma, Resta, Multiplicación y División) y Lógica (Comparación y ordenamiento). Son variables numéricas cuyos valores representan una categoría o identifican un grupo de pertenencia contando con un orden lógico. Este tipo de variables nos permite establecer relaciones de igualdad/desigualdad y a su vez, podemos identificar si una categoría es mayor o menor que otra Son variables numéricas cuyos valores representan magnitudes y la distancia entre los números de su escala es igual. Con este tipo de variables podemos realizar comparaciones de igualdad/desigualdad, establecer un orden dentro de sus valores y medir la distancia existente entre cada valor de la escala. Las variables de intervalo carecen de un cero absoluto, por lo que operaciones como la multiplicación y la división no son realizables

Ejemplos de Escalas NOMINAL Variable: Profesión Licenciado Abogado Ingeniero Médico Escala: ORDINAL Variable: Grado de Instrucción Superior Post superior Primaria Secundaria

Variable: Materias Inscritas Ejemplos de Escalas DISCRETA Variable: Materias Inscritas 3 4 5 6 Escala: CONTINUA Variable: Peso (gr.) 60,2 75,4 76,8 83,5

Métodos de Recolección de Datos Observación -Observación directa, -Lista de verificación. Encuesta Entrevista Cuestionario

Ejercicios 1.- Clasifique las siguientes variables como cualitativas o cuantitativas: a) Comida Favorita b) Profesión c) Goles marcados d) Género e) Nivel de Educación f) Lugar en una competencia g) Temperatura h) Número de trabajadores en una empresa i) Unidades producidas j) Kilowatt-hora consumidos 2.- Clasifique las siguientes variables como ordinal, nominal, discreta o continua: a) Temperaturas medidas en un laboratorio cada media hora b) Número de miembros que integran la unidad familiar c) Ingresos anuales d) Llamadas que llegan a la central telefónica e) Vida media de los tubos de televisión producidos por una fábrica f) Período de duración de un automóvil g) La nacionalidad de una persona h) Condición social de un entrevistado i) Grado de participación de los estudiantes en cursos j) Salario

Análisis de Datos Distribución de Frecuencias Representaciones Gráficas Medidas de Posición Medidas de Dispersión o Variabilidad

Distribución de Frecuencias Es una ordenación de datos que muestra la ocurrencia de valores, cuyo objeto es condensar los datos sin perder los detalles esenciales. Esta tabla contiene la clase o categoría de los datos, la frecuencia absoluta, frecuencia relativa, frecuencia absoluta acumulada y frecuencia relativa acumulada. Para aquellos casos donde exista un gran número de categorías se agrupan los datos por intervalos (datos agrupados), si existen pocas categorías se describen los datos de forma no agrupada.

Distribución de Frecuencias Frecuencia absoluta (ni) Es el número de veces que aparece repetido cada valor de la variable (categoría). Frecuencia relativa (fi) Es el cociente ni/N; siendo N el total de las observaciones. Este cociente indica la proporción que representan los datos de una categoría o clase determinada, en relación al total de los datos (N). Frecuencia absoluta acumulada (Ni) Se obtiene sumando las frecuencia absolutas precedentes a cada clase o categoría. Frecuencia relativa acumulada (Fi) Es el cociente Ni/N; representa la proporción de datos ubicados en el extremo interior de la distribución y un valor superior. Clase o Categoría (Xi) Representan los valores diferentes de la variable, dentro de las observaciones.

Distribución de Frecuencias Ejercicio #1 (DATOS AGRUPADOS) Se desea estudiar el diámetro interno de las arandelas que se producen con un determinado proceso de fabricación, los siguientes datos representan el diámetro interno en mm de 16 arandelas tomadas de una muestra aleatoria; construya una tabla de distribución de frecuencia para describir los datos. Tabla de Distribución de Frecuencia

Distribución de Frecuencias Tratamiento de datos por intervalos (DATOS AGRUPADOS) Se utiliza para aquellos casos donde existe una gran variedad de categorías o clases para la variable en estudio, por lo que se hace necesario agrupar los datos por intervalos del mismo tamaño (amplitud). Notación: Xi: punto medio LI: Límite inferior del intervalo LS: Límite superior del intervalo ni: Frecuencia absoluta (número de datos que están dentro del intervalo) A: amplitud m: número de intervalos li: límite inferior de todas las observaciones ls: límite superior de todas las observaciones FÓRMULAS: A= ls - li Xi= LS + LI m 2

Distribución de Frecuencias Ejercicio #2 (DATOS AGRUPADOS POR INTERVALOS) Parte de un estudio de control de calidad tuvo como objetivo mejorar una línea de producción, para lo cual se midieron los pesos en onzas de 50 barras de jabón, obteniéndose los siguientes resultados. Construya una tabla de distribución de frecuencias agrupando los datos en 5 intervalos. Tabla de Distribución de Frecuencia