Universidad Nacional de Colombia

Slides:



Advertisements
Presentaciones similares
I.E.S.MIGUEL HERNÁNDEZ – DEPARTAMENTO FAMILIA PROFESIONAL DE ELECTRICIDAD 1.
Advertisements

JESÙS JAVIER LEYVA GONZÀLEZ
Silicio Semiconductor.
Semiconductor tipo P y N Unión P-N en estado de equilibrio
Tema 2: Semiconductores
Materiales Tipo P y Tipo N
Electrónica Análoga I Prof. Dr. Gustavo Patiño MJ
Instituto Tecnológico de Saltillo FISICA IV ING
MATERIALES UTILIZADOS EN LAS NUEVAS TECNOLOGIAS
Semiconductores, aisladores y metales
Profesor en Mecánica Automotriz
Cristalino: Que está constituido por átomos apilados con un patrón regular y repetitivo. Unión metálica es aquella en que los electrones de valencia se.
SEMICONDUCTORES.
STEFANIA AGUIRRE MARISOL CUARTAS ALEXANDER ARDILA
SEMICONDUCTORES Semiconductor
Capítulo 1 Física de los Semiconductores
Materiales utilizado en la Informática (Fibra óptica, Semiconductores,
Modelo del mar (o gas) de electrones
Conducción Eléctrica La corriente eléctrica es debida al arrastre de electrones en presencia de un campo E. El flujo de corriente depende de: La Intensidad.
INSTITUTO TECNOLOGICO DE SALTILLO
Estructura de la Materia Materiales Conductores Materiales Semiconductores y Materiales Dieléctricos Prof. Gustavo Patiño. M.Sc. Ph.D MJ
TEMA 1: SEMICONDUCTORES Mª Dolores Borrás Talavera.
CONDUCTORES Ing. Juan Jose Nina Ch. Como ya dijimos en la sección anterior, los átomos se combinan para formar compuestos; así cuando varios átomos se.
ELECTRÓNICA GENERAL (parte I)
Semiconductores, aisladores y metales
FÍSICA DE SEMICONDUCTORES BANDAS DE ENERGÍA
FÍSICA DE SEMICONDUCTORES BANDAS DE ENERGÍA
FÍSICA DE SEMICONDUCTORES BANDAS DE ENERGÍA
FÍSICA DE SEMICONDUCTORES ALEACIONES EN SEMICONDUCTORES UN Cristiam Camilo Bonilla Angarita -fsc04Cristiam- 14/junio/2015.
FÍSICA DE SEMICONDUCTORES BANDAS DE ENERGÍA
Practica III Documental.
Universidad Nacional de Colombia Departamento de Física Asignatura Física de Semiconductores Tarea No 14 BANDAS DE ENERGÍA Profesor: Jaime Villalobos Velasco.
FÍSICA DE SEMICONDUCTORES BANDAS DE ENERGÍA
FÍSICA DE SEMICONDUCTORES CARACATERÍSTICAS DEL Si
FÍSICA DE SEMICONDUCTORES BANDAS DE ENERGÍA UN Juan Nicolas Casas Marquez fsc08Juan 10/junio/2015.
FÍSICA DE SEMICONDUCTORES BANDAS DE ENERGÍA
FÍSICA DE SEMICONDUCTORES CARACATERÍSTICAS DEL Si
Universidad Nacional de Colombia Departamento de Física Asignatura Física de Semiconductores Tarea No 14 BANDAS DE ENERGÍA Profesor: Jaime Villalobos Velasco.
FÍSICA DE SEMICONDUCTORES CARACATERÍSTICAS DEL Si UN Julio Alberto Rey Ramírez -fsc34Julio
FÍSICA DE SEMICONDUCTORES BANDAS DE ENERGÍA
FÍSICA DE SEMICONDUCTORES PORTADORES EN LOS SEMICONDUCTORES UN Andrés Rey Caballero.
FÍSICA DE SEMICONDUCTORES BANDAS DE ENERGÍA
Universidad Nacional de Colombia Departamento de Física Asignatura Física de Semiconductores Tarea No 14 Profesor: Jaime Villalobos Velasco Estudiante:
FÍSICA DE SEMICONDUCTORES CARACATERÍSTICAS DEL Si
ESTRUCTURA DEL ATOMO CHOEZ PINCAY JOSE ELIAS ELECTRONICA I.
FÍSICA DE SEMICONDUCTORES BANDAS DE ENERGÍA
UN Oscar Alejandro Olaya Sánchez -fsc24Oscar- 19/06/2015.
FÍSICA DE SEMICONDUCTORES BANDAS DE ENERGÍA
AISLANTES Y CONDUCTORES
FÍSICA DE SEMICONDUCTORES CARACATERÍSTICAS DEL Si UN Lizeth Andrea Anzola Fernández -fsc01Lizeth
FÍSICA DE SEMICONDUCTORES BANDAS DE ENERGÍA UN Cristiam Camilo Bonilla Angarita -fsc04Cristiam- 7/junio/2015.
FÍSICA DE SEMICONDUCTORES BANDAS DE ENERGÍA
CARGA ELECTRICA. ¿Qué es una carga eléctrica? Se comprueba experimentalmente que en algunos casos la fuerza que se ejerce entre dos masas tiene un valor.
FÍSICA DE SEMICONDUCTORES BANDAS DE ENERGÍA
FÍSICA DE SEMICONDUCTORES BANDAS DE ENERGÍA
1 Diodos Unión P N.
Universidad Nacional de Colombia
FÍSICA DE SEMICONDUCTORES BANDAS DE ENERGÍA
1.
FÍSICA DE SEMICONDUCTORES BANDAS DE ENERGÍA
UN David Antonio Burbano Lavao -fsc05David-.  Una ALEACIÓN de materiales semiconductores es una agregación de diferentes estructuras cristalinas para.
FÍSICA DE SEMICONDUCTORES BANDAS DE ENERGÍA UN Lizeth Andrea Anzola Fernandez -fsc01Lizeth- Fecha.
Los dispositivos semiconductores
Docente: Ing. Raimon Salazar Cargas Eléctricas Cuando un cuerpo neutro es electrizado, sus cargas eléctricas, bajo la acción de las fuerzas correspondientes,
Semiconductores Extrínsecos Tipo N y Tipo P
Docente: Ing. Raimon Salazar Semiconductores Intrínsecos A los semiconductores que, para poder conducir la electricidad, dependen de que los electrones.
Conceptos básicos Efecto fotovoltaico: conversión de luz en electricidad. Efecto fotovoltaico: conversión de luz en electricidad. Materia: constituida.
SEMICONDUCTORES Alumno : Rodríguez Sánchez Eduardo Francisco Carrera : Ingeniería de Sistemas Ciclo : IV Profesor : Mendoza Nolorbe Juan.
SEMICONDUCTORES INTRÍNSECOS Y DOPADOS Alan Arroyo Alvarez Física Electrónica Ingeniería de Sistemas Convalidación.
SEMICONDUCTORES INTRÍNSECOS Y DOPADOS HELMER EDUARDO CALLE SANCHEZ.
Transcripción de la presentación:

Universidad Nacional de Colombia Física de Semiconductores Tarea No 14 Pablo Mosquera Duarte

Evolución de las bandas de energía que presentan las estructuras cristalinas Los átomos de la misma clase tiene los mismos niveles de energía, pero si se juntan, los electrones de un mismo nivel no pueden ocupar exactamente el mismo nivel, por esta razón, trata de ubicarse en un nivel ligeramente diferente, pero muy cercano.

Estructura de las bandas de energía de un material aislante  Se denomina aislante eléctrico al material con escasa conductividad eléctrica. El comportamiento de los aislantes se debe a la barrera de potencial que se establece entre las bandas de valencia y conducción que dificulta la existencia de electrones libres capaces de conducir la electricidad a través del material, el aislante es el que posee más de 4 electrones en su última capa de valencia.

Estructura de las bandas de energía de un material semiconductor Un semiconductor es una sustancia que se comporta como conductor o como aislante dependiendo del campo eléctrico en el que se encuentre, capaz de conducir la electricidad mejor que un aislante, pero peor que un metal. El elemento semiconductor más usado es el silicio, aunque idéntico comportamiento presentan las combinaciones de elementos de los grupos II y III con los de los grupos VI y V respectivamente (AsGa, PIn, AsGaAl, TeCd, SeCd y SCd). De un tiempo a esta parte se ha comenzado a emplear también el azufre. La característica común a todos ellos es que son tetravalentes, teniendo el silicio una configuración electrónica s²p².

Estructura de las bandas de energía de un material conductor  Se dice que un cuerpo es conductor eléctrico cuando puesto en contacto con un cuerpo cargado de electricidad transmite ésta a todos los puntos de su superficie. Generalmente elementos, aleaciones o compuestos con electrones libres que permiten el movimiento de cargas. Los conductores son todos aquellos que poseen menos de 4 electrones en su última capa de valencia. Los elementos capaces de conducir la electricidad cuando son sometidos a una diferencia de potencial eléctrico más comunes son los metales, siendo el cobre el mas usado de entre todos ellos, otro metal utilizado es el aluminio y en aplicaciones especiales, debido a su baja resistividad y dureza a la corrosión, se usa el oro. 

Qué son materiales intrínsecos, extrínsecos y anfóteros Un semiconductor cristalino con ninguna impureza o defectos de patrón se conoce como semiconductor Intrínseco. En estos materiales no hay portadores de carga a una temperatura 0K, ya que la banda de valencia está llena de electrones y la banda de conducción vacía. Además de los materiales intrínsecos, existen semiconductores a los que se les introducen impurezas dentro del cristal, estos son conocidos como extrínsecos. El proceso conocido como dopaje, se usa para variar la conductividad de los semiconductores. Un caso particular se produce cuando un material de grupo III o V de la tabla periódica es dopado con silicio o germanio del grupo IV. Estas impurezas son llamadas Anfóteras, ya que el Silicio y el Germanio sirven como donadores o aceptores.

Tipos de Semiconductores Semiconductores intrínsecos Es un cristal de silicio o germanio que forma una estructura tetraédrica similar a la del carbono mediante enlaces covalentes entre sus átomos, en la figura representados en el plano por simplicidad. Cuando el cristal se encuentra a temperatura ambiente algunos electrones pueden absorber la energía necesaria para saltar a la banda de conducción dejando el correspondiente hueco en la banda de valencia. Las energías requeridas, a temperatura ambiente, son de 1,12 eV y 0,67 eV para el silicio y el germanio respectivamente.

Tipos de Semiconductores Semiconductores extrínsecos Si a un semiconductor intrínseco, como el anterior, se le añade un pequeño porcentaje de impurezas, es decir, elementos trivalentes o pentavalentes, el semiconductor se denomina extrínseco, y se dice que está dopado. Semiconductor tipo N Un Semiconductor tipo N se obtiene llevando a cabo un proceso de dopado añadiendo un cierto tipo de átomos al semiconductor para poder aumentar el número de portadores de carga libres (en este caso negativos o electrones). Semiconductor tipo P Un Semiconductor tipo P se obtiene llevando a cabo un proceso de dopado, añadiendo un cierto tipo de átomos al semiconductor para poder aumentar el número de portadores de carga libres (en este caso positivos o huecos).