JUAN F. QUINTERO G2E26 Clase del 19 de mayo 2015

Slides:



Advertisements
Presentaciones similares
Presentado por: Oscar Andrés Duque Alvao G9N10 – Código:
Advertisements

RAYOS X Y GENERALIDADES
RAYOS X Y GENERALIDADES
LOS RAYOS X HOY CUMPLEN 115 AÑOS DE SU DESCUBRIMIENTO
RAYOS X Diana Marcela Ochica Chaparro.
Rayos ultravioleta Se denomina radiación ultravioleta o radiación UV a la radiación electromagnética cuya longitud de onda está comprendida aproximadamente.
ESTRUCTURA DE LA MATERIA “¿De qué está compuesta la materia?”
ESTRUCTURA DE LA MATERIA “¿De qué está compuesta la materia?”
Ensayos No Destructivos
HAZ DE RAYOS X Y FORMACION DE LA IMAGEN
Mallory Paola Pulido Cruz Grupo 8 No. de lista: 32 Código:
MATERIA: MEDICINA NUCLEAR
Tema 2 Interacción de la radiación con la materia
NATURALEZA ELECTROMAGNETICA DE LA MATERIA
Descubrimiento del electrón: los rayos catódicos son un tipo de radiación que sale del cátodo (polo negativo) a través del tubo vacio hacia el polo positivo.
implicaciones principales de los rayos x
16/04/2017 Área 2 – Características Físicas de los equipos y haces de rayos X. Principio de funcionamiento de un equipo de rayos X
RAYOS X GENERALIDADES 1.
FÍSICA DE SEMICONDUCTORES Espectros Atómicos
FÍSICA DE SEMICONDUCTORES Espectros Atómicos
Espectros.
Rafael Augusto Avella Peña Fundamentos de física moderna
RRAYOS X. GNERALIDADES.
Fundamentos de Física Moderna Espectroscopía
FUNDAMENTOS DE FÍSICA MODERNA RAYOS X
FUNDAMENTOS DE FÍSICA MODERNA RAYOS X
FUNDAMENTOS DE FÍSICA MODERNA RAYOS X UNIVERSIDAD NACIONAL DE COLOMBIA Víctor Manuel López Mayorga G2E18victor Clase del 19 de mayo 2015.
Carlos Francisco Pinto Guerrero David Antonio Burbano Lavao
UN Pedro Arturo Estupiñan Gómez -G2E12Pedro- Clase del 19 de mayo 2015.
Compendio de Experimentos Clásicos de la Física Moderna ANDRÉS FABIÁN DUQUE RINCÓN GIE08ANDRES.
FÍSICA DE SEMICONDUCTORES Modelos Atómicos
FUNDAMENTOS DE FISICA MODERNA -RAYOS X-
RAYOS X UN DESCUBRIMIENTO ACCIDENTAL. Guillermo Sánchez; Álvaro Baena Est. Ing. Mecatrónica Universidad Nacional de Colombia. INTRODUCCIÓNAPLICACIONESEMISION.
Universidad Nacional de Colombia
FÍSICA DE SEMICONDUCTORES Espectros Atómicos UN Juan Camilo Ramirez Ayala código: 30 6 de junio del 2015.
FUNDAMENTOS DE FÍSICA MODERNA RAYOS X
Rayos X: Un acercamiento experimental
FUNDAMENTOS DE FÍSICA MODERNA RAYOS X
Facultad de Odontología
Compendio de Experimentos Clásicos de la Física Moderna DIEGO SEBASTIÁN MUÑOZ PINZÓN -G1E18DIEGO- JUNIO DE 2015.
RAYOS X UN DESCUBRIMIENTO ACCIDENTAL.
FUNDAMENTOS DE FÍSICA MODERNA RAYOS X
BANCO DE QUICES ONDAS ELECTROMAGNETICAS Juan Pablo Pescador (G2N19) Felipe Oliveros (G2N15) INICIAR.
FÍSICA DE SEMICONDUCTORES Espectros Atómicos UN Juan Felipe Ramírez.
RAYOS X Universidad Nacional de Colombia Fundamentos de física moderna
Compendio de experimentos clásicos de la Física Moderna Juan Pablo Sánchez Grupo 1-31 Fundamentos de Física Moderna Universidad Nacional de Colombia.
Germán David Sierra Vargas G1E26
Fundamentos de Física Moderna Radiación del Cuerpo Negro
Ventajas y desventajas de los rayos X
FUNDAMENTOS DE FÍSICA MODERNA RAYOS X
G1E06Domingo DOMINGO ALFONSO CORONADO ARRIETA FISICA MODERNA
FUNDAMENTOS DE FÍSICA MODERNA RAYOS X
Fundamentos de Física Moderna Espectroscopía
FUNDAMENTOS DE FÍSICA MODERNA PERSONAJES
Andrés Felipe Duque Bermúdez
Jhoan Manuel Martínez Ruiz Universidad Nacional de Colombia
FUNDAMENTOS DE FÍSICA MODERNA RAYOS X
Fundamentos de Física Moderna Espectroscopía
 G2E22Daniel Daniel Alejandro Morales Manjarrez Fundamentos de física moderna Clase 19 de Mayo.
Experimentos Clásicos de la Física Moderna
FUNDAMENTOS DE FÍSICA MODERNA RAYOS X UN DIEGO SEBASTIÁN MUÑOZ PINZÓN -G1E18DIEGO- CLASE DEL 19 DE MAYO 2015.
Sergio Toledo Cortes G2E31
Compendio de Experimentos Clásicos de la Física Moderna
Tema: ESPECTROSCOPÍA Nombre: María José Nicolalde.
IV Curso de Radiografía de Tórax: Lo elemental para AP y SCCU
PROFESOR JAIME VILLALOBOS VELASCO DEPARTAMENTO DE FÍSICA UNIVERSIDAD NACIONAL DE COLOMBIA KEVIN DANIEL BARAJAS VALEROG2N03.
Modelos Atómicos y teorías Atómicas Carlos Fabian Beltran C. Universidad Nacional de Colombia Facultad de ingeniería.
La Rx simple de Tórax es aun, y seguirá siendo, uno de los principales retos del diagnostico radiológico. La frecuencia de realización es muy alta, constituyendo.
Materia de estudio: Física y Astronomía. Integrantes: Roberta Lessona, Tomas Rodriguez, Nicolás Meyar y Gabriel Torres.
Sergio Mendivelso Física moderna 2016-I. 1: QUÉ ENTIENDE POR EL TÉRMINO RADIACIÓN DEL CUERPO NEGRO, RCN? Un Cuerpo negro es aquel que absorbe toda la.
Transcripción de la presentación:

JUAN F. QUINTERO G2E26 Clase del 19 de mayo 2015 RAYOS X JUAN F. QUINTERO G2E26 Clase del 19 de mayo 2015

DEFINICIÓN La denominación rayos X designa a una radiación electromagnética, invisible para el ojo humano, capaz de atravesar cuerpos opacos y de imprimir las películas fotográficas. Los actuales sistemas digitales permiten la obtención y visualización de la imagen radiográfica directamente en una computadora (ordenador) sin necesidad de imprimirla. La longitud de onda está entre 10 a 0,01 nanómetros, correspondiendo a frecuencias en el rango de 30 a 30000 PHz (de 50 a 5000 veces la frecuencia de la luz visible).

DESCUBRIMIENTO El físico alemán Wilhelm Conrad Röntgen descubrió los rayos X en 1895, mientras experimentaba con los tubos de Hittorff-Crookes y la bobina de Ruhmkorff para investigar la fluorescencia violeta que producían los rayos catódicos. Tras cubrir el tubo con un cartón negro para eliminar la luz visible, observó un débil resplandor amarillo-verdoso proveniente de una pantalla con una capa de platino- cianuro de bario, que desaparecía al apagar el tubo. Determinó que los rayos creaban una radiación muy penetrante, pero invisible, que atravesaba grandes espesores de papel e incluso metales poco densos. Usó placas fotográficas para demostrar que los objetos eran más o menos transparentes a los rayos X dependiendo de su espesor y realizó la primera radiografía humana, usando la mano de su mujer. Los llamó "rayos incógnita", o "rayos X" porque no sabía qué eran, solo que eran generados por los rayos catódicos al chocar contra ciertos materiales.

PRODUCCIÓN Los rayos X se pueden observar cuando un haz de electrones muy energéticos (del orden de 1 keV) se desaceleran al chocar con un blanco metálico. Según la mecánica clásica, una carga acelerada emite radiación electromagnética, de este modo, el choque produce un espectro continuo de rayos X a partir de cierta longitud de onda mínima dependiente de la energía de los electrones. Este tipo de radiación se denomina Bremsstrahlung, o ‘radiación de frenado’. Además, los átomos del material metálico emiten también rayos X monocromáticos, lo que se conoce como línea de emisión característica del material. Otra fuente de rayos X es la radiación sincrotrón emitida en aceleradores de partículas.

Tubo con filamento El tubo con filamento es un tubo de vidrio al vacío en el cual se encuentran dos electrodos en sus extremos. El cátodo es un filamento de tungsteno y el ánodo es un bloque de metal con una línea característica de emisión de la energía deseada. Los electrones generados en el cátodo son enfocados hacia un punto en el blanco (que por lo general posee una inclinación de 45°) y los rayos X son generados como producto de la colisión. El total de la radiación que se consigue equivale al 1% de la energía emitida; el resto son electrones y energía térmica, por lo cual el ánodo debe estar refrigerado para evitar el sobrecalentamiento de la estructura. A veces, el ánodo se monta sobre un motor rotatorio; al girar continuamente el calentamiento se reparte por toda la superficie del ánodo y se puede operar a mayor potencia. En este caso el dispositivo se conoce como «ánodo rotatorio». Finalmente, el tubo de rayos X posee una ventana transparente a los rayos X, elaborada en berilio, aluminio o mica.

TUBOS CON GAS El tubo con gas se encuentra a una presión de aproximadamente 0.01 mmHg y es controlada mediante una válvula; posee un cátodo de aluminio cóncavo, el cual permite enfocar los electrones y un ánodo. Las partículas ionizadas de nitrógeno y oxígeno, presentes en el tubo, son atraídas hacia el cátodo y ánodo. Los iones positivos son atraídos hacia el cátodo e inyectan electrones a este. Posteriormente los electrones son acelerados hacia el ánodo (que contiene al blanco) a altas energías para luego producir rayos X. El mecanismo de refrigeración y la ventana son los mismos que se encuentran en el tubo con filamento.

ESPECTRO Cuando los electrones que son acelerados en el tubo de rayos X poseen cierta energía crítica, pueden pasar cerca de una subcapa interna de los átomos que componen el blanco. Debido a la energía que recibe el electrón, este puede escapar del átomo, dejando al átomo en un estado supremamente excitado. Eventualmente, el átomo regresará a su estado de equilibrio emitiendo un conjunto de fotones de alta frecuencia, que corresponden al espectro de líneas de rayos X. Éste indiscutiblemente va a depender de la composición del material en el cual incide el haz de rayos X, para el molibdeno, la gráfica del espectro continuo muestra dos picos correspondientes a la serie K del espectro de líneas, estas están superpuestas con el espectro continuo. La intensidad de cualquier línea depende de la diferencia del voltaje aplicado (V) y el voltaje necesario para la excitación (V’) a la correspondiente línea, y está dada por:

VIDEOS https://www.youtube.com/results?search_query=rayos+x https://www.youtube.com/watch?v=-v3im6eGew0

REFERENCIAS http://www.xtal.iqfr.csic.es/Cristalografia/parte_02.html http://www.nlm.nih.gov/medlineplus/spanish/ency/article/003337.htm https://www.youtube.com/results?search_query=rayos+x