METABOLISMO DE LIPOPROTEÍNAS

Slides:



Advertisements
Presentaciones similares
MERITXELL NUS, FRANCISCO J. SÁNCHEZ-MUNIZ, JOSÉ M. SÁNCHEZ-MONTERO
Advertisements

Metabolismo de los lípidos - Digestión y absorción de lípidos.
DISLIPIDEMIAS IP Ana Marisol González Silva Dr. Joao Herrera
SECCIÓN II Bioenergética y el metabolismo de carbohidratos y lípidos
CITOQUINAS.
FUNCIÓN HEPÁTICA 1.
SECCIÓN II Bioenergética y el metabolismo de carbohidratos y lípidos
METABOLISMO DE LÍPIDOS
METABOLISMO DE LÍPIDOS
METABOLISMO DE LÍPIDOS
Dislipidemia
Farmacoterapia en dislipidemias
CARDIOLOGÍA ALVARADO ROBLES LLUVIA M. ÁVILA ARELLANO HUGO U.
BOLILLA 7 METABOLISMO DE LIPIDOS
TRANSPORTE DE LIPIDOS.
Control en cascada.
LIPIDOS ESTEBAN OSORIO CADAVID BIOLOGÍA CELULAR Y BIOQUIMICA I
QUIMICA BIOLOGICA Lic. en Biol. Molec. e Ing. en Alim.
¿COMO ALCANZAR LOS OBJETIVOS LIPÍDICOS?
5.5 Regulación. The immune-adrenal axis 5.6 Fisiología del sistema. Renina angiotensina.
Universidad Autónoma del Carmen Facultad de Ciencias de la Salud Nutrición –Metabolismo TEMA: METABOLISMO DE LIPIDOS MC Addy Leticia Zarza García Noviembre.
LIPOPROTEINAS PLASMATICAS
Difusión Facilitada : Se requieren Proteínas que participan en el proceso. No se requiere el acoplamiento a un donador de Energía. 1.Canales de iones 2.Transportadores.
Estructura de las lipoproteínas
CAPÍTULO 1 DEFINICIÓN DE UNA DISLIPIDEMIA
Prenatal Development/ Desarrollo Prenatal Week 3: Mar. 3/8/14.
Prenatal Development/ Desarrollo Prenatal Week 3: 9/18/14.
LIPOPROTEINAS TRANSPORTE DE LIPIDOS ATEROESCLEROSIS ETIOLOGIA FACTORES DE RIESGO: PERMANENTES: Herencia, Sexo, Edad, Raza. MODIFICABLES: Diabetes,
Actualización en el tratamiento
METABOLISMODE LOS LIPÍDOS
BOLILLA 7 METABOLISMO DE LIPIDOS
Dislipidemias Las dislipidemias son alteraciones del colesterol y los triglicéridos de la sangre. El colesterol y los triglicéridos son lípidos componentes.
Time Expression with Hacer Grammar Essential #106.
Some “boolean” concepts The following series of slides is not supposed to give you answers, but to provide substance for thought and ponder. The placenta.
TRANSPORTE DE LIPIDOS Dra. Angélica Girón.
UNIT 7.5 STARS, CONSTELLATIONS AND GALAXIES. Stars Spherical body. Generates light and heat through nuclear reactions. Most of them consist of gases,
Stem-Changing verbs.
The organization of the human body
THERE ARE 4 STATES OF MATTER 1. SOLIDS-THE MOVEMENT OF PARTICLES IN SOLIDS IS VERY SLOW. IN FACT, WE CAN’T SEE THEM MOVE…YET, THEY DO. SOLIDS HAVE A DEFINITE.
METABOLISMO DE LÍPIDOS
ATEROSCLEROSIS.
PERFIL LIPIDICO Concentraciones de lipoproteínas asociadas
METABOLISMO DE LÍPIDOS
L IPOPROTEÍNAS DE BAJA DENSIDAD : LDL Allan Murillo Ralston No
TENER, ESTAR and ANDAR in the Preterite. The verbs tener, estar, and andar have similar stem changes in the Preterite tense. They all have “uv” in the.
“DISLIPIDEMIA DEL SÍNDROME METABÓLICO”
METABOLISMODE LOS LIPÍDOS
Metabolismo de Triacilglicéridos Br. Néstor Pernía Br. Carlos Pérez
The heart is the strongest organ in the body. It is the main part of the circulatory system. It is the most important part of the human body that pumps.
Aterosclerosis Jenny Sirley Cano.
PROGRAMA ANALITICO Y/O DE EXAMEN
Andrés José Caviedes Torres Inmunología Universidad de Antioquia 2015.
Indirect Object Pronouns Original PowerPoint was by Ms. Martin of Tri-Center Community Schools.
Matter and changes in state Classification of Matter Physical and Chemical Properties More questions
AIM: What is the difference between aerobic and anaerobic cellular respiration?Cual es la diferencia entre respiracion aerobica y anaerobica? DN: Explain.
Los pronombres relativos que y quien El subjuntivo en cláusulas adjetivales: con antecedentes indefinidos o que no existen.
What are some other organic molecules? Lipids/ Lipidos Fats/ Grasas.
Aim: How can we describe the structure and function of cell organelles
Aim: What can affect the rate of enzyme reactions? Que puede afectar la tasa de reacciones enzimáticas?
Un juego de adivinanzas: ¿Dónde está el tesoro? A1B1C1D1E1F1 A4B4C4D4E4F4 A2B2C2D2E2F2 A5B5C5D5E5F5 A3B3C3D3E3F3 A6B6C6D6E6F6 Inténtalo de nuevo Inténtalo.
AIM: Why and how do cells divide? Por que y como se dividen las celulas? DN: Compare and Contrast Sexual and Asexual Reproduction. Compara y contrasta.
Metabolismo de los lípidos - Digestión y absorción de lípidos.
Funciones de los lípidos Fuente de energía Producen por oxidación 9Kcal/g Manto térmico Componentes de membranas celulares Estructura de caracteres sexuales.
Los ácidos y las sales biliares emulsifican las grasas. Son absorbidos en el intestino delgado y llevados hasta el hígado. En la sangre, los lípidos son.
What is Genetic Engineering? Que es la Ingenieria Genetica? Genetic Engineering is a new process that scientists use to alter the genetic instructions.
The Nervous System/ Sistema Nervioso Receives information Directs your body to respond to the information. How does the nervous system maintain homeostasis?
Figure 1. Effects of diabetes on postprandial lipemia. A defect in removal of lipids from the bloodstream after a meal is common in patients with diabetes.
METABOLISMO DE LÍPIDOS
Ensamblaje y Metabolismo
Transcripción de la presentación:

METABOLISMO DE LIPOPROTEÍNAS IMPORTANCIA DE LAS LIPOPROTEÍNAS: Transporte de TAG, colesterol, vitaminas liposolubles y otros lípidos. Se asocian con enfermedades del endotelio vascular como ateroesclerosis, así como infarto al miocardio y otras enfermedades cardiovasculares.

ESTRUCTURA DE LAS LIPOPROTEÍNAS Núcleo de ésteres de colesterol y TAG. Capa externa con fosfolípidos, colesterol libre y apoproteínas.

Figure 17. 2 The lipoprotein particle Figure 17.2 The lipoprotein particle. The external monolayer of a lipoprotein particle contains free cholesterol, phospholipids, and apoproteins. Cholesterol esters and triacylglycerols locate in the particle core.

ESTRUCTURA DE LAS LIPOPROTEÍNAS Clasificadas según su densidad: Quilomicrones: TG, B48, 75-1200 μm diámetro. VLDL: TG, B100, 30-80. IDL: TG y CHOL, B100, 25-35. LDL: CHOL, B100, 18-25. HDL: Proteína, AI, AII, 5-12.

ESTRUCTURA DE LAS LIPOPROTEÍNAS Apoproteínas: Interactúan con receptores. Activan o inhiben enzimas de metabolismo de lipoproteínas. ApoA: en HDL. ApoB: metabolismo de quilomicrones y LDL. ApoE: unión a receptores. ApoC: activador e inhibidor enzimático.

ESTRUCTURA DE LAS LIPOPROTEÍNAS Lipoproteína (a): Partícula LDL (con apoB100), mediante puentes disulfuro se une a: Apo (a). Sintetizada en el hígado, homologa a plasminógeno.

Figure 17. 3 Schematic structure of lipoprotein (a) Figure 17.3 Schematic structure of lipoprotein (a). Lipoprotein (a) is essentially an LDL particle, with apo(a) is linked to apoB through a disulfide bridge. Apo(a) is a large molecule containing a number of repeat units (kringles). Kringles have structure similar to plasminogen.

FUNCIONES DE LAS LIPOPROTEÍNAS Quilomicrones: Transporte de TAG de intestino a tejidos periféricos. Lipoproteín lipasa hidroliza quilomicrones en el hígado. Productos de hidrólisis son captados por receptor de LDL al que se une la apoB48 del quilomicrón.

FUNCIONES DE LAS LIPOPROTEÍNAS VLDL: Transporte de TAG del hígado a tejidos periféricos. Lipoproteín lipasa hidroliza VLDL que se convierte en IDL o LDL. ApoE (en IDL) o apoB100 (en LDL) se unen a receptores hepáticos.

FUNCIONES DE LAS LIPOPROTEÍNAS LDL: Transporte de CHOL de hígado a periferia. HDL: Transporte de CHOL de la periferia al hígado.

ENZIMAS Y PROTEÍNAS ACARREADORAS Lipasa de lipoproteínas: Hidroliza TAG de lipoproteínas en endotelio vascular. Actúa sobre quilomicrones y VLDL, libera glicerol y AGL. Triacilglicerol lipasa hepática: Hidroliza TAG en membrana plasmática hepática. Actúa sobre partículas digeridas parcialmente por la lipasa de lipoproteínas (IDL, LDL).

ENZIMAS Y PROTEÍNAS ACARREADORAS Lecitín-colesterol aciltransferasa: Enzima asociada con HDL. Esterifica CHOL tomado por HDL.

RECEPTORES DE LIPOPROTEÍNAS Principal receptor: receptor de apo B/E (conocido como receptor de LDL). La expresión del gene del receptor está regulada por la concentración intracelular de colesterol.

Figure 17. 4 LDL and scavenger receptors Figure 17.4 LDL and scavenger receptors. While the LDL (apoB/E) receptor mediates the uptake of intact LDL, the scavenger receptor internalizes modified LDL. Both receptors span the cell membranes. The expression of LDL receptor is regulated by the intracellular cholesterol concentration, while the scavenger receptor remains unregulated. The scavenger receptor type A, which is illustrated here, is present on macrophages and has a collagen-like structure. Scavenger receptor type BI participates in HDL-metabolism.

RECEPTORES DE LIPOPROTEÍNAS Receptores de amplia especificidad: “scavenger”. En células fagocíticas como los macrófagos. No regulados por mecanismos de retrocontrol.

MEDICIÓN DE LIPOPROTEÍNAS

Figure 17.5 (B) The calculation of LDL-cholesterol concentration in plasma. LDL-cholesterol can be calculated from the value of total cholesterol, triglycerides, and HDL-cholesterol using the Friedewald formula.

METABOLISMO DE LIPOPROTEÍNAS

Figure 17.6 Lipoprotein metabolism: the fuel transport pathway and the overflow pathway. The fuel transport pathway: chylomicrons transport triglyceride to the periphery, and their remnants are metabolized in the liver. VLDL transport fuel from the liver to peripheral tissues, and the remnants also return to the liver. Part of VLDL remnants and IDL are further converted into LDL, which enter the overflow pathway. The overflow pathway: LDL travel in blood from the liver through the peripheral tissues and back to the liver. On its way it may enter the arterial wall. The amount of lipids deposited in the arteries is proportional to their plasma concentration. Cholesterol is removed from cells and transported back to the liver by HDL particles. LPL: lipoprotein lipase, LRP: LDL-receptor-related protein.

Figure 17. 7 Reverse cholesterol transport Figure 17.7 Reverse cholesterol transport. HDL are assembled in the liver and intestine as discoidal particles. They acquire cholesterol from cell membranes aided by cholesterol efflux regulatory protein (CERP). LCAT associated with HDL esterifies the acquired cholesterol. The formed cholesteryl esters move to the inside of the particle, and the particle becomes spherical. HDL exchanges apoproteins and cholesteryl esters with triacylglycerol-rich lipoproteins. This is facilitated by cholesterol ester transfer protein (CETP). HDL acquire triacylglycerols in exchange for cholesteryl esters. This increases their size further. However, when cholesterol transfer to the liver mediated by the scavenger receptor BI is completed, the HDL size decreases again: some of the redundant material is used to construct apoAI-rich, lipid-poor particles (pre-beta HDL). These re-enter the cholesterol removal cycle.

DISLIPIDEMIAS.

Figure 17. 8 Atherogenesis: the process Figure 17.8 Atherogenesis: the process. Atherogenesis is driven by signals mediated by cytokines and growth factors generated by all the major types of cells participating in the process: endothelial cells, macrophages, T lymphocytes and vascular smooth muscle cells (VSMC). There are multiple activation paths: for instance, the expression of MCP-1 and VCAM-1 may be stimulated by signals generated macrophages as well as by the oxidized LDL. VSMC may be stimulated by the dysfunctional endothelial cells, by macrophages, and by T lymphocytes (note also the autocrine activation). Note that a hormone, angiotensin II also participates in these processes. MCP-1: monocyte chemoattractant protein 1, VCAM-1: vascular cell adhesion molecule 1, ICAM-1: intracellular cell adhesion molecule 1, TNFβ: tumor necrosis factor beta, TNFα: tumor necrosis factor alpha, IFNγ: interferon gamma, NO: nitric oxide, PDGF: platelet-derived growth factor, bFGF: basic fibroblast growth factor, IGF-1: insulin-like growth factor 1, EGF: epidermal growth factor, TGFβ: transforming growth factor beta, IL-1: interleukin 1.

Figure 17. 9 Atherogenesis: role of growth factors and cytokines Figure 17.9 Atherogenesis: role of growth factors and cytokines. Atherogenesis involves endothelial dysfunction, arterial deposition of lipids, inflammatory reaction, and the migration and proliferation of the arterial smooth muscle cells. Note the key role of lipid oxidation in the formation of lipid-laden cells and the lipid center of the atherosclerotic plaque. The sequence of events, and their control by cytokines and growth factors are described in the text. (Compare Fig. 17.8.)

Figure 17. 10 Atherosclerotic plaque Figure 17.10 Atherosclerotic plaque. The lipid center and fibrous cap are the main parts of a mature atherosclerotic plaque which emerges from the structurally changed vascular wall. The so-called vulnerable plaque ruptures easily. This figure illustrates areas vulnerable to breakage and shows the obstructing thrombus formed at the rupture site.

EVALUACIÓN DEL RIESGO CARDIOVASCULAR

Figure 17. 11 Plasma cholesterol and coronary mortality in men Figure 17.11 Plasma cholesterol and coronary mortality in men. Total cholesterol concentration in plasma in relation to the number of deaths from heart disease in a population. Note: converting plasma lipid values into SI units: cholesterol: to convert mg/dL into mmol/L, mutliply by 0.02586; triglycerides: to convert mg/dL into mmol/L, multiply by 0.01129. The data are from the Multiple Risk Factor Intervention Trial (MRFIT). Stammler et al. JAMA 1986;256:2823.

Figure 17.12 The interpretation of cholesterol, triglyceride, and HDL-cholesterol measurements. To convert plasma lipid values into conventional units: total cholesterol, LDL-cholesterol, and HDL-cholesterol: to convert mmol/L into mg/dL: multiply by 38.67; triglycerides: to convert mmol/L into mg/dL, multiply by 87.5. CHD, coronary heart disease.