Sesión 20 martes 14 de Octubre:

Slides:



Advertisements
Presentaciones similares
POTENCIAL DE REPOSO Y POTENCIAL DE ACCION
Advertisements

Potencial de Reposo de la Membrana
LECCIÓN 3 Propiedades de transporte: ecuación de Boltzmann
POTENCIAL DE REPOSO Y POTENCIAL DE ACCION
Tema 7.- CORRIENTE ELÉCTRICA
Tema 7.- CORRIENTE ELÉCTRICA
POTENCIAL DE REPOSO Y POTENCIAL DE ACCION
Dr. Carlos Morales A. Cardiólogo Pediatra UPCP – Hospital Coquimbo
TRANSPORTE DE IONES Y DE MOLÉCULAS A TRAVÉS DE LA MEMBRANA CELULAR
SOLUCIONES DE ELECTROLITOS
potencial de membrana y Potencial de difusión
Comportamiento Eléctrico de la Célula -1-
El origen de los biopotenciales
REACCIONES QUÍMCAS 1. Las reacciones químicas
Electrodos de biopotencial
La segunda ley de la termodinámica. BioFisicoQuimicaMacroMolecular 2008/ Clases/Clase
EQUILIBRIO DE SISTEMAS ELECTROQUÍMICOS
Iones y potenciales eléctricos 5 de abril de CURSOS_2010/FISIOLOGIA GENERAL.
FISIOLOGIA I TEMA NUMERO 6 FUERZAS QUIMICAS QUE INTERVIENEN EN LOS PROCESOS DE PERMEABILIDAD IONICA PROFESOR: Gregorio Tiskow, Ph.Sc.
3.Métodos Electroanalíticos.
Electrodifusión 2007 Materia necesaria para entender algunos artículos que se discuten en los seminarios. La ecuación de Nernst-Planck Potenciales de juntura.
Conductimetría Es un método electro analítico basado en la conducción eléctrica de los iones en solución, que se relaciona con la concentración de una.
Electroquímica Estudia los fenómenos que se producen en la transformación de energía eléctrica en energía química mediante reacciones redox (celdas electrolíticas)
Ampliació de Química-Física Interacció Materia-Radiació
POTENCIOMETRIA TOPICOS: Celdas galvánicas
La membrana plasmática impide el paso de iones y metabolitos de un lado a otro debido a su naturaleza hidrofóbica. Realizado por Dr. A. Martínez-Conde.
Axón de jibia CURSOS_2010 FISIOLOGÍA GENERAL Hoy les hablara Carlos
Termoquímica Capítulo 6
Impulso nervioso.
FISIOLOGIA I TEMA NUMERO 7 Potencial de Membrana en Reposo PROFESOR: Gregorio Tiskow, Ph.Sc. U.C.L.A. Barquisimeto, Venezuela.
Entender qué significa que un ion esté en equilibrio es la base
Ruth Elizabeth Robayo Escobar Fundamentos de Electricidad y Magnetismo Código: No. de lista: 31 Grupo 12.
EEG: mide la actividad cerebral de un individuo
Amplificador operacional
¿ Que ocurre cuando existe una carga eléctrica en la molécula que va a atravesar la membrana ? ¿ Que fuerza dirige ese movimiento ? Cuando la molécula.
Estequiometría y Cinética de Crecimiento
FISIOLOGIA GENERAL 2007 EXCITABILIDAD.
Iones y potenciales eléctricos 15 de marzo de /Fisiologia2007/Clases/IonesyPotenciales.ppt.
POTENCIALES DE ACCION. IRRITABILIDAD “CAPACIDAD DE REACCIONAR FRENTE A LOS CAMBIOS DEL MEDIO EXTERNO O INTERNO, DEBIDA A LA FACULTAD DE LOS ORGANISMOS.
Teoría del cable La constante de espacio
“neuroelectrónica” o “neuroelectricidad” o “juan carlos”
Estructura y propiedades de los canales de iones Martes 17 de abril: ftp://einstein.ciencias.uchile.cl/ CursoTroncal2007.
Iones y potenciales eléctricos
Sesión 21 martes 16 de Octubre: Fundamentos de la Neurobiología I. Dr. Osvaldo Alvarez. 2ª parte.
Axón de jibia 6 de abril de Fisiología General 2009, Clases, VoltageClampK.ppt.
Axón de jibia 9 de abril de Fisiología General 2009, Clases, AxondeJibia.ppt.
Soluciones o Disoluciones Químicas
Termodinámica Introducción
 Faraday: electrolito + campo eléctrico = iones Pero no es necesario en realidad la presencia de un campo eléctrico para que un electrolito se disocie.
Potencial de acción de membrana
UNIDAD I: TERMOQUÍMICA Capítulo 1: FUNDAMENTOS DE LA TERMOQUÍMICA
Soluciones o Disoluciones Químicas
Propagación del impulso nervioso
Sesión 20 martes 14 de Octubre:
Potencial de Reposo de la Membrana
Métodos potenciométricos
Selectividad 12 de abril de Fisiologia2007/Clases/Selectividad.ppt.
Biofisicoquímica Potenciales
Eduardo Francisco Hernández Alarcón.
Neurona: Potencial de Membrana y de Acción
Biofisicoquímica Presentación Clase de repaso I NSTITUTO DE C IENCIAS DE LA S ALUD U NIVERSIDAD N ACIONAL A RTURO J AURETCHE Av. Lope de Vega 106, Florencio.
El potencial de membrana en reposo
BALANCE DE MATERIA Y ENERGIA
CAPACIDAD Y CORRIENTE ELÉCTRICA
Transporte Celular. ¿Por qué la célula necesita transportar sustancias?
TEMA I Teoría de Circuitos
Campo Eléctrico Campo Eléctrico en la materia Corriente Eléctrica
TEMA 5: TERMOQUÍMICA QUÍMICA IB.
Facultad de Ciencias Exactas Químicas y Naturales Universidad Nacional de Misiones Cátedra: Fundamentos de Transferencia de Calor Área: Convección Ing.
TERMOQUÍMICA.
Transcripción de la presentación:

http://einstein.ciencias.uchile.cl Curso Troncal 2008. Sesión 20 martes 14 de Octubre: Fundamentos de la Neurobiología I. Dr. Osvaldo Alvarez. Elementos básicos de electricidad aplicados a membranas biológicas. Potencial de membrana y su dependencia de las especies de iones. Ecuación de Nernst –Plank. La ecuación Goldman-Hodgkin-Katz para el potencial de reposo Potencial de acción; curso temporal y su descripción macroscópica (experimentos de Hodgkin y Huxley de 1952). http://einstein.ciencias.uchile.cl Curso Troncal 2008.

Conducción de la electricidad en soluciones de electrolitos

Pregunta.¿Cuantas moléculas atraviesan la ventana durante un tiempo t? vt Hay n moléculas por m3. La ventana tiene un área A m2. Las moléculas viajan a una velocidad de v ms-1

Pregunta.¿Cuantas moléculas atraviesan la ventana durante un tiempo t? vt

Pregunta.¿Cuantas moléculas atraviesan la ventana durante un tiempo t? vt Las moléculas contenidas en volumen Avt

Respuesta. Las contenidas en el volumen Av t , que son nAvt. n = moléculas por unidad de volumen (m-3) A = Área de la ventana ( m2 ) v = velocidad de las partículas ( m s-1 ) t = intervalo de tiempo ( s )

N = número de Avogadro, ( mol-1 ) c es la concentración en moles m-3 Número de moléculas que atraviesan la ventana en un tiempo t es nAvt. Número de moles que atraviesan la ventana en un tiempo t es nAvt/N = cAvt (mol). N = número de Avogadro, ( mol-1 ) c es la concentración en moles m-3 Flujo = J = Número de moles que pasan la ventana por unidad de área y por unidad de tiempo = cv (mol m-2 s-1).

Movimiento en un medio viscoso Velocidad = movilidad · fuerza movilidad = velocidad por unidad de fuerza ¿Cuál es la fuerza que impulsa la electrodifusión?

Energía interna E = q - w = energía que entra al sistema en forma de calor menos la que sale del sistema en forma de trabajo. ( joule) Entalpía H = E + PV = E + producto presión volumen Entropía S = qrev / T Cambio de Entropía = calor absorbido en un proceso reversible / temperatura. Sus unidades son joule/ kelvin Energía Libre G = H - TS Definición de Energía libre.

Energía libre en sistemas abiertos. j = potencial químico el componente j. Cambio de la Energía libre del sistema que se produce al agregar 1 mol de componente j, manteniendo constantes T, P y la cantidad de todos los otros componentes. ( joule / mol ).

Potencial químico standard del compuesto j, oj es el cambio de Energía libre asociado con agregar 1 mol del compuesto j, estando en su estado de referencia. Es decir a una concentración = 1. ¿Cuál es el cambio de Energía libre asociado con agregar dnj moles estando a una concentración cualquiera? ? ¿Qué relación hay entre el potencial químico y la concentración?

Examinemos la termodiámica de la un cambio de concentración. Inicial m1 cajas disponibles Final m2 cajas disponibles ¿Qué hace que las moléculas se difundan ocupando todo el volumen? El estado final tiene más entropía que el inicial. Ecuación de Boltzmann para la entropía. k es la constante de Boltzmann y W la probabilidad estadística del sistema. W es el número de maneras distintas que se puede arreglar internamente el sistema.

Inicial m1 cajas disponibles Final m2 cajas disponibles Cálculo de la entropía. Las cajas son todas del mismo volumen. Se podría poner las N moléculas en una sola caja. Inicial m1 cajas disponibles Final m2 cajas disponibles Estado inicial: vamos a poner N moléculas en m1 cajas W ¿De cuántas maneras puedo poner la primera molécula? m1 ¿De cuántas maneras puedo poner la segunda molécula? m1 ¿De cuántas maneras puedo poner las dos primeras moléculas? m12 ¿De cuántas maneras puedo poner N moléculas para el estado inicial? m1N ¿De cuántas maneras puedo poner N moléculas para el estado final? m2N

Inicial m1 cajas disponibles Final m2 cajas disponibles Cálculo de la entropía. Inicial m1 cajas disponibles Final m2 cajas disponibles Para 1 mol de soluto R = kN = 8.3143 joulemol-1K-1

El número de moles de soluto no cambia cuando se el soluto se difunde desde una condición inicial ci Vi hasta una final cf Vf. El cambio de entropía asociado al cambio de concentración es: El cambio de energía libre asociado al cambio de concentración es (*): Y si cf = 1 entonces: (*) G = H - TS. Suponemos soluciones ideales: H = 0 para la difusión.

Potencial químico standard del compuesto j, oj es el cambio de energía libre asociado con agregar 1 mol del compuesto j, estando en su estado de referencia. Es decir a una concentración = 1. ¿Cuál es el cambio de energía libre asociado con agregar dnj moles estando a una concentración cualquiera? concentración = cj concentración = cj dnj dnj concentración = 1 concentración = 1

Si el componente j es un ion, es decir lleva una carga eléctrica zeo, tenemos que considerar el trabajo eléctrico de traer el ion hasta la solución Se define como potencial eléctrico en un punto del espacio, , como el “Trabajo de traer una carga eléctrica unitaria desde el infinito hasta el punto”. Se mide en volt ( joule/coulomb ). El trabajo para dn moles de iones de valencia z es zFdn, donde F es el número de Faraday (96500 coulomb/mol).

Flujo = concentración  movilidad  fuerza Volvemos al movimiento de las moléculas en un medio viscoso. Flujo = concentración  movilidad  fuerza ¿Cuál es la fuerza que impulsa la electrodifusión? Es menos el gradiente de potencial químico.

Ecuación de Nernst-Planck Electrodifusión en una sola dimensión: Ecuación de Nernst-Planck

Membrana selectiva, deja entrar K+ pero no Cl-. KCl c’ JK JCl KCl c’’ JCl = 0 ( Condición impuesta en el planteamiento) JK = ? implica transporte de carga eléctrica. movimiento de carga eléctrica. ¿Qué pasa con el potencial eléctrico?

JK La capacidad eléctrica de las membranas biológicas es 1 F/cm2 KCl c’ KCl c’’ - + Las dos soluciones separadas por la membrana constituyen un condensador eléctrico. Al transportar carga se genera una diferencia de potencial eléctrico. La relación entre carga q y potencial  es la capacidad eléctrica C del condensador, que se mide en Farad (coulomb/volt).

JK c’ ’ c’’ ’’ - + A medida que pasa el tiempo la concentración c’ disminuye y la concentración c’’ aumenta; el potencial ’ disminuye y el potencial ’’ aumenta. Esto continúa hasta que las concentraciones y potenciales no cambien más. Se llega a un estado de equilibrio en que JK = 0.

Este paréntesis se hace 0. Ec. de Nernst RT/F = 25 mV a 20oC

- + c’ ’ c’’ ’’ Ec. de Nernst - + Ec. de Nernst ¿Cómo se mide este potencial? ¿Cómo se conectan las soluciones a los cables de los instrumentos eléctrónicos? Usando electrodos, por ejemplo el electrodo de plata/plata clorurada. http://en.wikipedia.org/wiki/Silver_Chloride_Electrode

Alambre de Ag clorurado Electrodo Tubo de ensayo con KCl 1M Ag Ag+ + e- Ag+ + Cl- AgCl Si llega un electrón por el alambre de plata, se combina con un Ag+ y se libera un ion Cl- del AgCl. Si se va un electrón por el alambre de plata, se libera un Ag+ que se combina con un ion Cl- para formar AgCl. http://en.wikipedia.org/wiki/Silver_Chloride_Electrode

Potenciales de unión líquida. Zona de mezcla JK JCl KCl’ KCl’’ JK = JCl no hay transporte de carga eléctrica. Esta es la condición que implica una diferencia de potencial que no cambia en el tiempo.

(Electroneutralidad) En un punto en la zona de mezcla: (Electroneutralidad) Integrando entre los bordes de la zona de mezcla

Conductividad específica molar a dilución infinita El potencial de unión líquida que se desarrolla entre dos soluciones de KCl es despreciable porque las movilidades de K+ y Cl- son muy parecidas Robinson y Stokes. Electrolyte solutions. Butterwoths. London 2ª edicion 1959.

Construcción de un electrodo Alambre de Ag clorurado Tubo de ensayo con KCl 1M Electrodo Puente de agar-KCl 1M http://en.wikipedia.org/wiki/Silver_Chloride_Electrode

Ecuación de Henderson del potencial de juntura para mezclas más complejas. Henderson.xls En http://einstein.ciencias.uchile.cl http://www.moleculardevices.com/pdfs/pCLAMP_AppNote_LJP_Corrections.pdf

- + c’ ’ c’’ ’’ V Ec. de Nernst. Deducida para corriente = 0 - + V ¿Cómo se mide este potencial sin tomar corriente? Se construye un vólmetro que no tome corriente usando amplificadores operacionales. http://en.wikipedia.org/wiki/Operational_amplifier http://en.wikipedia.org/wiki/Operational_amplifier_applications

Midiendo voltaje tomando corriente Midiendo voltaje sin tomar corriente V1 R1 http://en.wikipedia.org/wiki/Field-effect_transistor http://en.wikipedia.org/wiki/Operational_amplifier http://en.wikipedia.org/wiki/Operational_amplifier_applications

Si A >> 1 Si A >> 1 Amplificador operacional con realimentación negativa V1 R1 Si A >> 1 Si A >> 1

Integración de la ecuación de Nernst-Plank

Coeficiente de Difusión, D. Ecuación de Einstein: Unidades del Coeficiente de Difusión: Potencial reducido, adimensional

Integración por partes Multiplico ambos lados por ezU Recordar esto Aplicar a:

? ? Recordar esto

Para integrar el lado izquierdo necesitamos conocer U en función de x. Recordar esto

+ J U U extracelular U intracelular - x 0  Suposición de Goldman: el campo eléctrico es constante en el interior de la membrana ( dU/dx = constante). intracelular membrana extracelular + J U U extracelular U intracelular - x 0  En esta ecuación  es el espesor de la membrana. Vamos a integrar la ecuación de Nernst-Planck entre los bordes de la membrana. Condiciones de borde: Borde Intracelular x = 0, c(0) = c’int, U(0) = Um Borde Extracelular x = , c() = c’ext, U() = 0.

En estado estacionario, el flujo, J, es igual en todos los puntos de la membrana. La ecuación de Nernst-Planck en punto x en el interior de la membrana. Separo las variables . Uso la suposición de campo constante . Integro desde x = 0 hasta x =  .

Estamos integrando la ecuación de Nernst-Planck entre los bordes de la membrana. Condiciones de borde: Borde Intracelular x = 0, c(0) = c’int, U(0) = Um Borde Extracelular x = , c() = c’ext, U() = 0.

Definición de la permeabilidad de la membrana, P. Las concentraciones en los bordes interno y externo de la membrana, c’int y c’ext, se relacionan con las concentraciones en las soluciones internas y externas, c y cext mediante el coeficiente de partición . Definición de la permeabilidad de la membrana, P. Esta es la ecuación de flujo de Goldman - Hodgkin - Katz

Usar ex -1  x para x 0 ¿Cuánto es el flujo para Um  0? Otra manera de verlo: Usar ex -1  x para x 0

Potencial eléctrico de una membrana permeable a Na, K y Cl, que separa soluciones que contienen estos tres iones. Na+ K+ Cl- JNa JK JCl Condición de potencial eléctrico constante es corriente cero INa + IK + Icl = 0. Condición de corriente cero es JNa + JK - Jcl = 0.

Multiplica el flujo de Cl- por eUm / eUm Multiplica el flujo de Cl- por -1/-1 para dejar todas las expresiones con denominador común JNa + JK - JCl = 0

La suma tiene que ser cero La ecuación Goldman-Hodgkin-Katz para el potencial de reposo

La densidad de corriente llevada por un ion.

IK INa Vm, mV Las curvas I/V para K y Na según GHK y las concentraciones intra y extracelulares en el axón de jibia

Caso límite de la ecuación GHK: cin  cex, UNernst = 0 La ecuación GHK se reduce a la ley de Ohm. Para cin  cex Admitiendo estas aproximaciones:

Iones en una célula de jibia. Na+ 50 mM K+ 440 mM Cl- ? in -60 mV Na+ 440 mM K+ 10 mM Cl- 450 mM ex 0 mV Si la membrana es permeable al ion cloruro y no hay una bomba de cloruro, esperamos que el cloruro esté en equilibrio. La concentración la podemos calcular usando la ecuación de Nernst. Cl = m El experimento confirma que la concentración intracelular de cloruro es efectivamente 41 mM.

Iones en una célula de jibia. Na+ 50 mM K+ 440 mM Cl- 41 mM in -60 mV Na+ 440 mM K+ 10 mM Cl- 450 mM ex 0 mV Na+ 50 mM K+ 440 mM Cl- 41 mM A- 449 mM A- =Aniones orgánicos no difusibles. Tema de seminario de próximo martes. Armstrong, C. 2003. The Na/K pump, Cl ion, and osmotic stabilization of cells. PNAS 100:6257-6262

Iones en una célula de jibia. Na+ 50 mM K+ 440 mM Cl- 41 mM in -60 mV Na+ 440 mM K+ 10 mM Cl- 450 mM ex 0 mV En el potencial de reposo

En el potencial de reposo

0 Medición del potencial de reposo A=105 Esto se cumple para todos los circuitos con realimentación negativa

m Im Im Inyectando corriente Electrodo de tierra es muy grande. La densidad de corriente (A/cm2) en la superficie del electrodo es pequeña porque el área es grande. La reacción redox del electrodo se puede suponer muy cerca del equilibrio Mostrar MapShow

m Im Im Midiendo la corriente El amplificador mantiene el electrodo de tierra activamente a potencial cero. La intensidad de la corriente se puede calcular del potencial eléctrico medido a la salida del amplificador. Mostrar MapShow Mostrar MapShow

m Im Im = 0 t < 0.01 ms Im = -50 Acm-2 0.1 < t < 0.25 ms Im = 0 t > 0.25 ms

m Im Im = 0 t < 0.01 ms Im = -99 Acm-2 0.1 < t < 0.25 ms Im = 0 t > 0.25 ms

m Im Im = 0 t < 0.01 ms Im = 10 Acm-2 0.1 < t < 0.25 ms Im = 0 t > 0.25 ms

m Im Im = 0 t < 0.01 ms Im = 20 Acm-2 0.1 < t < 0.25 ms Im = 0 t > 0.25 ms

m Im Im = 0 t < 0.01 ms Im = 35 Acm-2 0.1 < t < 0.25 ms Im = 0 t > 0.25 ms

m Im Im = 0 t < 0.01 ms Im = 36 Acm-2 0.1 < t < 0.25 ms Im = 0 t > 0.25 ms The Nerve Impulse Dr. Francisco Bezanilla. http://nerve.bsd.uchicago.edu/TheNerveImpulse05.pdf

Imponiendo un voltaje m m

Voltage clamp m m m

Imponiendo un voltaje y midiendo la corriente con un solo amplificador. Este electrodo tiene m sólo para corrientes muy pequeñas m m m + ImR1 m Mostrar VClampShow

Imponiendo un voltaje y midiendo la corriente con un solo amplificador y un solo electrodo. Patch clamp. Este electrodo tiene m sólo para corrientes muy pequeñas m m + ImR1 m

The Nerve Impulse Dr. Francisco Bezanilla. http://nerve. bsd. uchicago

The Nerve Impulse Dr. Francisco Bezanilla. http://nerve. bsd. uchicago