EM2011 Serie de Problemas 02 -Aplicaciones-

Slides:



Advertisements
Presentaciones similares
EM2011 Serie de Problemas 02 -Aplicaciones-
Advertisements

CAMPO MAGNÉTICO (I).
EM2011 Solución serie de problemas 01 -Problemas fundamentales-
EM2011 Serie de Problemas 02 -Aplicaciones-
EM2011 Serie de Problemas 02 -Aplicaciones- G 12NL3 Walther Universidad Nacional de Colombia Depto de Física Mayo 2011.
EM2011 Serie de Problemas 02 -Aplicaciones- G 10NL08YUDY Universidad Nacional de Colombia Dpto de Física Mayo 2011.
EM2011 Serie de Problemas 02 -Aplicaciones- G9NL31JUANSAAB Universidad Nacional de Colombia Depto de Física Mayo 2011.
EM2011 Serie de Problemas 02 -Aplicaciones- G 12NL24 JUANA PACHECO Universidad Nacional de Colombia Depto de Física Mayo 2011.
EM2011 Serie de Problemas 02 -Aplicaciones- G 12NL32 SEBASTIAN Universidad Nacional de Colombia Depto. de Física Mayo 2011.
EM2011 Serie de Problemas 02 -Aplicaciones-
Transitorios.
FUNDAMENTOS DE ELECTRICIDAD Y MAGNETISMO
Ciencias Físicas 4.
F.E.M. INDUCCION DE CARGAS ACELERADOR DE PARTICULAS INFLUENCIA DE CAMPOS MAGNETICOS.
EM2011 Serie de Problemas 02 -Aplicaciones- G _NL__ nombre Universidad Nacional de Colombia Depto de Física Mayo 2011.
EM2011 Serie de Problemas 02 -Aplicaciones- G 12NL22 PAOLA Paola Juliana Olivares Sánchez Universidad Nacional de Colombia Depto de Física Mayo 2011.
EM2011 Serie de Problemas 02 -Aplicaciones- G09NL05Juan Juan Camilo Arévalo Mutis Universidad Nacional de Colombia Depto de Física Mayo 2011.
Se describe la interacción entre el campo magnético y eléctrico. En que la variación del campo magnético produce un campo eléctrico, y así puede generarse.
El Fenómeno de la Luz Parte III Electromagnetismo Luz y Ondas Sonoras Prof. Dorcas I. Torres MSP21 - Fase II.
Electromagnetismo y ley de Faraday
EM2011 Serie de Problemas 02 -Aplicaciones- G 12NL8 Diego Universidad Nacional de Colombia Depto de Física Mayo 2011.
Adriana María Romero Romero G2N24Adriana Código
EM2011 Serie de Problemas 02 -Aplicaciones-
Solucion 2do Parcial Diana Lucia Gómez Molina G12NL15.
EM2011 Serie de Problemas 02 -Aplicaciones- G 12NL36 Ian Sarasty Medina Universidad Nacional de Colombia Depto de Física Mayo 2011.
EM2011 Serie de Problemas 02 -Aplicaciones- G10NL22SILVIA SILVIA JULIANA HERNANDEZ REYES Universidad Nacional de Colombia Depto de Física Mayo 2011.
SOLUCIÓN SEGUNDO PARCIAL FISICA II ELECTRICIDAD Y MAGNETISMO
EM2011 Serie de Problemas 02 -Aplicaciones- G 10NL31JOANNA Universidad Nacional de Colombia Depto de Física Mayo 2011.
ELIZETH JOHANNA FLORIAN CASTRO COD: G12NL11.
EM2011 Serie de Problemas 02 -Aplicaciones- G 09NL24 Juan Sebastián Quinche Velandia Cód Universidad Nacional de Colombia Depto. de Física Mayo.
EM2011 Serie de Problemas 02 -Aplicaciones- G12NL39SANTIAGO Universidad Nacional de Colombia Depto. de Física Mayo 2011.
EM2011 Serie de Problemas 02 -Aplicaciones- G 09NL24 Iván Felipe Marín Rivas Universidad Nacional de Colombia Depto de Física Mayo 2011.
EM2011 Serie de Problemas 01 -Problemas Fundamentales- G09NL15 Juan Manuel Flórez Universidad Nacional de Colombia Dpto. de Física Mayo 2011.
RAYOS X Universidad Nacional de Colombia Fundamentos de física moderna
EM2011 Serie de Problemas 02 -Aplicaciones- G 12NL14ANDRES Universidad Nacional de Colombia Dpto de Física Mayo 2011.
EM2011 Serie de Problemas 02 -Aplicaciones- G09 NL44 Estefanía Universidad Nacional de Colombia Depto de Física Mayo 2011.
EM2011 Serie de Problemas 01 -Problemas Fundamentales- G09NL08 Edwin Universidad Nacional de Colombia Depto de Física Mayo 2011.
EM2011 Serie de Problemas 02 -Aplicaciones- G 9NL23Sergio Andres Universidad Nacional de Colombia Depto de Física Mayo 2011.
EM2011 Serie de Problemas 02 -Aplicaciones- G 12NL41LUISA Universidad Nacional de Colombia Depto. de Física Mayo 2011.
EM2011 Serie de Problemas 02 -Aplicaciones-
EM2011 Serie de Problemas 02 -Aplicaciones- G 10NL21Jessica Hernandez Universidad Nacional de Colombia Depto de Física Mayo 2011.
Manuel Molano G1N18Manuel Andrés Felipe Zamudio G2N34Andrés FEM 2012 II.
EM2011 Serie de Problemas 02 -Aplicaciones- G10NL46Alejandro Universidad Nacional de Colombia Depto de Física Mayo 2011.
Angy Bibiana Ortiz Navarro G1N20angy
EM2011 Serie de Problemas 02 -Aplicaciones- G _NL__ nombre Universidad Nacional de Colombia Depto de Física Mayo 2011.
EM2011 Serie de Problemas 02 -Aplicaciones- G10NL46Alejandro Universidad Nacional de Colombia Depto de Física Mayo 2011.
EM2011 Serie de Problemas 02 -Aplicaciones- G 10NL47jessica Universidad Nacional de Colombia Depto. de Física Mayo 2011.
EM2011 Serie de Problemas 02 -Aplicaciones- G09NL09FC Universidad Nacional de Colombia Depto. de Física Mayo 2011.
Paula Angélica Solarte Blandón G2 N28
PRINCIPIO DEL ESPECTROMETRO DE MASAS MUESTRA DEL MATERIAL Calienta hasta vaporizar la muestra Se ioniza los diferentes átomos del compuesto Iones cruzan.
EM2011 Serie de Problemas 02 -Aplicaciones- G09NL30 Mario Rubiano Universidad Nacional de Colombia Depto. de Física Mayo 2011.
EM2011 Serie de Problemas 02 -Aplicaciones- G _NL__ nombre Universidad Nacional de Colombia Depto de Física Mayo 2011.
EM2011 Serie de Problemas 02 -Aplicaciones- G 10NL11 EDGAR ALEJADRO Universidad Nacional de Colombia Depto de Física Mayo 2011.
TANIA GIZETH VITERY ERAZO CODIGO: DOCENTE: JAIME VILLALOBOS.
SEGUNDA PARTE. GRADIENTE Propiedad que cambia con la posición. La imagen representa un gradiente de concentración en una célula; al interior de la membrana.
EM2011 Serie de Problemas 01 -Problemas Fundamentales- G 09NL28 Camilo Universidad Nacional de Colombia Depto. de Física Mayo 2011.
FUNDAMENTOS DE ELECTRICIDAD Y MAGNETISMO
Solución Parcial III Daniela Alfonso Carrizosa G1N02daniela.
ELECTROMAGNETISMO Y LEY DE FARADAY
EM2011 Serie de Problemas 02 -Aplicaciones-
Em 2012 Clase 01. Serie de fenómenos caracterizados por: – Altas velocidades (cercanas a c) Son estudiados por la Teoría de la Relatividad – Distancias.
EM2011 Serie de Problemas 02 -Aplicaciones- G 09NL01 Pamela Aguirre Universidad Nacional de Colombia Depto de Física Mayo 2011.
Daniela Angulo Páez G12 NL1. 1. Dos alambres paralelos son portadores de corrientes opuestas de 100 A c/u. Calcule su fuerza de repulsión si la longitud.
OSWALDO ENRRIQUE ACUÑA VELANDIA G1N01oswaldo TAREA Nº4.
EM2011 Serie de Problemas 02 -Aplicaciones- G12NL33SEBASTIAN SEBASTIAN ROMAN Universidad Nacional de Colombia Depto de Física Mayo 2011.
EM2011 Serie de Problemas 02 -Aplicaciones- G 10NL17BRAYANN GONZÁLEZ Universidad Nacional de Colombia Depto de Física Mayo 2011.
EM2011 Serie de Problemas 01 -Problemas Fundamentales- G12NL21SERGIO Universidad Nacional de Colombia Depto de Física Sergio Duvan Murcia Medina
EM2011 Serie de Problemas 02 -Aplicaciones- G 09NL16 Sergio Gaitán Pinzón Universidad Nacional de Colombia Depto de Física Mayo 2011.
1 Ecuaciones de Maxwell Luis Eduardo Tobón Llano Departamento de Ciencias e Ingeniería de la Computación Ingeniería Electrónica 2007.
EM2011 Serie de Problemas 02 -Aplicaciones-
Transcripción de la presentación:

EM2011 Serie de Problemas 02 -Aplicaciones- G 09N38 Anamaría Universidad Nacional de Colombia Depto de Física Mayo 2011

Aplicaciones 1. Dibuje un esquema que ilustre el principio de funcionamiento de un espectrómetro de masas y explicite dónde están las leyes de Maxwell

Aplicaciones 1. La muestra que se va a analizar debe ser ionizada, es decir, se separa en iones cargados LEY DE COULOMB: Al pasar por un campo eléctrico, los iones experimentan una fuerza (F = qE) 3. El haz de iones pasa a través de un campo magnético, lo que curvará su trayectoria. E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Muestra Ionizada ++++ ---- B 2. Los iones pasan por unas placas con una gran diferencia de potencial y se aceleran ya que se ven afectadas por un campo eléctrico LEY DE LORENTZ: Al pasar por un campo magnético, los iones con velocidad v experimentan una fuerza centrípeta (F = qv x B = mv2/r)

LEY DE LORENTZ: Si despejamos el radio de curvatura tenemos que Aplicaciones LEY DE LORENTZ: Si despejamos el radio de curvatura tenemos que R = mv/qB, por lo que a mayor masa, el radio de curvatura será mayor (se desviarán más de la trayectoria original) # de partículas masa 4. Los iones impactan en diferentes zonas de un detector dependiendo de su relación masa-carga (m/q) y envía señales a un computador 5. El computador recibe las señales, calcula la masa de los iones y cuántos impactan en cada zona. Finalmente, muestra el espectro.

Aplicaciones 2. Dibuje un esquema que ilustre el principio de funcionamiento de un magnetrón (el corazón de un horno de microondas) y explicite dónde están las leyes de Maxwell Imanes Cátodo Vacío Ánodo

Aplicaciones 1. Cuando se aplica una diferencia de potencial al magnetrón, los electrones del cátodo irán hacia el ánodo debido al campo eléctrico que se genera entre ellos. Esto ocurre por LEY DE COULOMB . . . . . . . . . . . . 2. Al mismo tiempo, los imanes generan un campo magnético. La trayectoria de los electrones cambiará por la FUERZA DE LORENTZ, haciendo que se muevan en forma de espiral Convenciones E . . . . B

Aplicaciones 3. El movimiento de los electrones genera una variación en el campo eléctrico que, por LEY DE FARADAY, produce un campo magnético. La propagación de estos campos son ondas electromagnéticas de diferentes frecuencias 4. Las cavidades semicilíndricas que están en el ánodo ayudan a generar un efecto de resonancia que permite “seleccionar” las ondas con una frecuencia y longitud de onda determinada: las microondas. El resto son amortiguadas.

Diseño Basado en la Leyes del electromagnetismo y resto de información que Usted ha aprendido en este curso de física diseñe un dispositivo, aparato, sistema, etc. Mi dispositivo es un recipiente que permita calentar su contenido en el momento que se requiera, por ejemplo, para llevar comida a cualquier lugar y poder calentarla incluso sin contar con un microondas u otro tipo de horno.

Diseño El recipiente tendría en el fondo un circuito similar al mostrado arriba: un capacitor conectado a un resistor y un interruptor que impida que se descargue antes de tiempo.

Diseño El capacitor se cargaría conectándolo a una fuente de tensión con anticipación. Al desconectarlo, es indispensable que el interruptor impida el paso de la corriente para evitar que el capacitor se descargue antes de tiempo. Al momento de necesitar calentar el contenido del recipiente simplemente se conecta el circuito (se “enciende” el interruptor) y se deja descargar el capacitor. Mientras esto sucede, hay una corriente pasando por el resistor, lo que genera calor según la Ley de Joule. Es el principio detrás de los hornos convencionales así que con la resistencia adecuada, el recipiente funcionaría de manera similar a un horno (sólo que portatil).