Análisis de Algoritmos

Slides:



Advertisements
Presentaciones similares
Teoría de Conjuntos Dr. Rogelio Dávila Pérez
Advertisements

Complejidad Computacional
Complejidad Computacional
Diseño y análisis de algoritmos
Diseño y análisis de algoritmos
Diseño y análisis de algoritmos
Diseño y análisis de algoritmos
Teoría de Lenguajes Dr. Rogelio Dávila Pérez Profesor - Investigador
Análisis de Algoritmos
Matemáticas Computacionales
Teoría de Conjuntos Dr. Rogelio Dávila Pérez ITESM, Campus Guadalajara
CONCEPTOS Y PROPIEDADES
PROF. ING. JULIO CESAR CANO RAMIREZ
Estructuras de Repetición Algoritmos
¿Cómo hacer para que una máquina comprenda el LN?
Introducción a los Algoritmos
DERIVADA DE UNA FUNCION REAL
¿ Que es la complejidad de un algoritmo ?
Resolución de Problemas Algoritmos y Programación
Técnico en programación de Software
ANÁLISIS DE ESTABILIDAD
UNIVERSIDAD LATINA (UNILA) IV. IMPLANTACION DE ALGORITMOS.
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERIA DIVISIÓN DE INGENIERÍA ELÉCTRICA COMPUTACIÓN PARA INGENIEROS NOTA IMPORTANTE: Para complementar.
CÁLCULO DIFERENCIAL.
Universidad Autónoma San Francisco
METODOLOGIA DE LA PROGRAMACION
1. FUNCIONES. LÍMITES. Depto. Matemáticas – IES Elaios
ESTRUCTURAS DE CONTROL
Programación de Computadores
EXPONENTES Y RADICALES
Análisis de Algoritmos
Análisis de Algoritmos
Análisis y Diseño de Algoritmos. Propiedades : f ( n )  O ( f ( n ) ) a ) O ( f ( n ) )  O ( g ( n ) )  f ( n )  g ( n )
TEMA Nº 1 Conjuntos numéricos.
Introducción al análisis de algoritmos

Representación de Señales y Ruido por medio de Series Ortogonales
Sistemas decimal, binario, octal y hexadecimal
Diseño y análisis de algoritmos
(Organización y Manejo de Archivos)
Descomposición Factorial Unidad 5
PROGRAMACIÓN PROCEDIMENTAL
Guías Modulares de Estudio Matemáticas IV – Parte B
Radicales y sus operaciones
Figure: Algoritmos Conceptos básicos. Programación: 1.Establecer una secuencia de acciones que: puedan ser ejecutadas por el procesador realicen una.
4.  Métodos matemáticos.
Programación Lineal Entera Antonio H. Escobar Z Universidad Tecnológica de Pereira – Colombia Posgrado en Ingeniería Maestría en Ingeniería Eléctrica.
Unidad 1: FUNDAMENTOS DE COMPUTACIÓN Y PSEUDOLENGUAJE
Tema 7: NOTACIONES ASINTÓTICAS
Programación de Computadores (IWI-131)
Análisis de algoritmos Generalidades
INTRODUCCIÓN A LA INGENIERÍA DEL SOFTWARE
Límites y continuidad Podríamos empezar diciendo que los límites son importantes en el cálculo, pero afirmar tal cosa sería infravalorar largamente su.
Elaboración de algoritmos usando lógica de programación
Ing. Antonio Crivillero
Actualizado agosto 2010 por Guiomar Mora de Reyes
“CURSO PROPEDÉUTICO PARA EL MEJORAMIENTO DEL PENSAMIENTO MATEMÁTICO”
Introducción a los TADs
Logaritmos.
* Cuando nos permite desarrollar un programa que necesitamos para tomar un conjunto de buenas prácticas para hacer eso. Esto se debe a que podemos ahorrar.
QUINTA CONFERENCIA Lugar: Oficinas Generales Fecha: 15 de Diciembre de 2007 Conferencista: Prof. Carlos Betancourt Monroy Centro de Estudios Científicos.
Resolución de problemas
LÍMITES Y SUS PROPIEDADES
75.41 Algoritmos y Programación II Cátedra Ing. Patricia Calvo Complejidad algorítmica.
Introducción Matemática Nivelatoria
Solución a Ecuaciones de Recurrencia Dr. Rogelio Dávila Pérez División de Posgrado Universidad Autónoma de Guadalajara
TEMA 3 SUCESIONES Y SERIES.
Operaciones algebraicas
LE, EI, Profesor Ramón Castro Liceaga UNIVERSIDAD LATINA (UNILA) IV. IMPLANTACION DE ALGORITMOS.
Transcripción de la presentación:

Análisis de Algoritmos Dr. Rogelio Dávila Pérez División de Posgrado Universidad Autónoma de Guadalajara e-mail: rdav90@gmail.com

Algoritmo Webster’s Ninth New Collegiate dictionary: “Un procedimiento para resolver un problema matemático, en un número finito de pasos que frecuentemente comprenden la repetición de alguna operación; o más general: un procedimiento paso-a-paso para resolver algún problema o alcanzar algún objetivo.”

Algoritmo La gente por siglos a buscado mejores métodos para lograr su objetivos, tales como: encender fuego, construir pirámides, repartir el correo, erigir una presa, aterrizar en la luna, etc.

Algoritmo Muchos algoritmos computacionales se basan en métodos que se desarrollaron antes de que se inventaran las computadoras.

Algoritmo Construir un algoritmo para ser ejecutado por una computadora implica ciertas consideraciones: Restricciones del lenguaje. Una computadora recibe instrucciones vía un limitado y bien-definido conjunto de operaciones primitivas. Una computadora puede ejecutar millones de instrucciones primitivas por segundo. Existe una tendencia hacia utilizar procedimientos que funcionan muy bien con ejemplos pequeños. Desafortunadamente algoritmos que funcionan perfectamente para problemas pequeños suelen comportarse de manera terrible cuando se aplican a problemas grandes.

Algoritmo Construir un algoritmo … (cont.) Necesidad de algoritmos de gran escala. Mientras que en la vida diaria un procedimiento rara vez se repite, las computadoras ejecutan procesos que se repiten un gran número de veces; por lo que surge la necesidad permanente de desarrollar métodos más eficientes o de mejorar los ya existentes.

Algoritmo El proceso de construcción de un algoritmo computacional requiere de los siguientes pasos: Diseño. Inicia con las ideas básicas y los métodos. Demostración de correctitud (prove the correctness). Verificación de que el plan de proyecto es realizable. Análisis. Consiste en verificar la complejidad y eficiencia del algoritmo. Implementación. Consiste en traducir el algoritmo a un lenguaje que entienda el computador (programación). El énfasis del curso será sobre los métodos para el diseño y el análisis de algoritmos.

Ejercicios Suponga que cuenta con 100 tarjetas cada una numerada del 1 al 100. Revuelva todas las tarjetas y vuelva a ponerlas en orden. Considere los siguientes números. Su tarea es borrar el menor número de elementos posibles de tal manera que los restantes queden en orden ascendente. Por ejemplo, eliminar todos los números excepto el primero y segundo los dejaría en orden ascendente. 9, 44, 32, 12, 7, 42, 34, 92, 35, 37, 41, 8, 20, 27, 83, 64, 61, 28, 39, 93, 29, 17, 13, 14, 55, 21, 66, 72, 23, 99, 1, 2, 88, 77, 3, 65, 83, 84, 62, 5, 11, 74, 68, 76, 78, 67, 75, 69, 70, 22, 71, 24, 25, 26.

Ejercicios (cont.) Calcule el valor de 264. Intente encontrar alguna manera de minimizar el número de multiplicaciones. Suponga que en un país extraño existen cinco tipos distintos de monedas con denominaciones de 15, 13, 29, 41, y 67 (todos en centavos). Encuentre una combinación de estas monedas que le permitan pagar 18 dólares y 8 centavos (1808 centavos). Asuma que cuenta con suficientes monedas de cada tipo en su bolsillo. Encuentre el máximo común divisor1 de 225277 y 178794. 1 El máximo común divisor de dos enteros es el entero más grande que los divide a ambos.

Inducción Matemática Definición Sea el conjunto C = {x  N| P(x)}. Si se satisface: P(1) es verdadero. Si se cumple que para un k arbitrario (k  N): De suponer P(k), logramos demostrar P(k+1) Entonces C = N (C es el conjunto de los Naturales) Ejemplo:

Inducción Matemática Ejercicios Demuestre que: 8+13+18+23+…+(3+5n) = 2.5n2+5.5n Demuestre que para todo n que pertenece a los naturales, xn-1 es divisible entre x-1. Si n es un número natural y 1+x > 0, entonces: (1+x) n  1 + nx Considere el triangulo siguiente: Encuentre una expresión para la suma del renglón i-ésimo y demuestre que es correcta. 1 = 1 3 + 5 = 8 7 + 9 + 11 = 27 13 + 15 + 17 + 19 = 64 21 + 23 + 25 + 27 + 29 = 125

Análisis de Algoritmos El propósito del análisis de algoritmos es predecir su comportamiento, especialmente al momento de ejecución, sin necesidad de implementarlo en algún lenguaje de computadora.

Análisis de Algoritmos ¿Por qué es importante analizar el algoritmo? Es conveniente el poder obtener mediciones simples de la eficiencia de un algoritmo antes de implementarlo. Es muy difícil medir la eficiencia real de un algoritmo ya implementado pues esta varía dependiendo del computador, del lenguaje en que se implementó o del compilador con que se cuente.

Análisis de Algoritmos Planteamiento inicial Dado un problema y una definición de su tamaño, deseamos encontrar una expresión para obtener el tiempo de ejecución del algoritmo con relación al tamaño del problema. El tamaño del problema se simplifica al considerar tan sólo el tamaño de la entrada. No siempre se tiene un solo valor de tiempo para diferentes entradas del mismo tamaño, por lo que en general el tiempo que se considera es para la peor entrada (worst-case input). El análisis que se considera es asintótico evaluando el tiempo de ejecución del algoritmo para entradas de gran tamaño y de manera creciente tendiendo hacia el infinito.

Funciones Monotónicas Def. Decimos que una función f(x) es monotónica, o no decreciente, si x  y siempre implica que f(x)  f(y). Una función f(x) es nomonotónica, o no creciente, si f(x) es monotónica. Ejemplos: Funciones Monotónicas: f(x) = x f(x) = x2 para x  0 f(x) = log(x) para x > 0 f(x) = ex Funciones nomonotónicas: f(x) = 1/x para x> 0

La notación Big Oh Def. Sean f y g dos funciones no negativas sobre los enteros positivos. Escribimos: y decimos que f(n) es de orden “a lo más” o orden big oh de g(n) si existen constantes c > 0 y n0 tales que:

Decir que f(n) es de órden O(g(n)), significa:

La notación Big Oh Con otras palabras: Def. Decimos que Si y solo si,

Ejercicios: Demostrar que si f3(n)=1+2+3+…+n, entonces f3 es de orden O(n2). 1+2+3+…+n=n(n+1)/2 n+n+n+…+n= n·n = n2 Demostrar que si f1(n)=log(n!), entonces f1 es de orden O(n log n). log(n!)=log(n·(n-1)·(n-2)·····2·1)) =log(n)+ log(n-1)+…+log(2)+log(1) log(n)+ log(n) +…+log(n)+log(n)=n·log n

La notación Big Oh Demostrar Si f(n)=O(s(n)) y g(n)=O(r(n)), entonces: f(n)+g(n)=O(s(n)+r(n)) f(n)·g(n)=O(s(n)·r(n))

La notación Big Oh Teorema 1 Para cualesquiera constantes c > 0 y a > 1, y para todas las funciones monotónicas crecientes f(n), (f(n)) c = O(af(n)) Es decir, una función exponencial siempre crecerá más rápido que una función polinomial.

La notación Big Oh Teorema 2 Sea p(n) = aknk+ ak-1nk-1+ + a1n+ a0 Un polinomio nonegativo (es decir, p(n) 0 para todo n) en n de grado k, entonces: p(n) = O(nk)

La notación Big Oh Demuestre las siguientes expresiones: (a) x2 = O(x5) (b) sin x = O(x) (c) 14.709 sqrt(x) = O(x/2+7cos x) (d) 1/x = O(1) (e) 23 log x = O(x.02)

La notación Big Omega Def. Sean f y g dos funciones no negativas sobre los enteros positivos. Escribimos: y decimos que f(n) es de orden de “al menos” o orden omega de g(n) si existen constantes c > 0 y a tales que: f(n)  c g(n) para toda n  a

La notación Big Omega Def. Decimos que cuando se cumple: Sí y solo sí, Con otras palabras: Def. Decimos que cuando se cumple: Sí y solo sí,

La notación Big Theta Def. Sean f y g dos funciones no negativas sobre los enteros positivos. Escribimos: y decimos que f(n) es de orden de g(n) o de orden theta de g(n) si: y

La notación Big Theta Def. Decimos que cuando se cumple que: Con otras palabras: Def. Decimos que cuando se cumple que: Sí y solo sí,

Clasificación de funciones por su tasa de crecimiento asintótico (g): funciones que crecen por lo menos tan rapidamente como g. (g): funciones que crecen con la misma rapidez que g. g O(g): funciones que no crecen más rapidamente que g.

Ejercicios: Demostrar que si f(n) = log2 n! entonces: f(n) = (n log2 n) Demostrar que: 60 n2+5n+1 = (n2)

La notación Big Oh Compare el órden de crecimiento de las siguientes funciones indicando el tipo de relación (Big Oh, Big Omega o Big Theta):

La notación Big Oh Nombre Categorías de Complejidad O(1) O(log log n) O(log n) O(nc), 0<c<1 O(n) O(n log n) O(n2) O(n3) O(nk), k  1 O(cn), c>1 O(n!) Constante Log Log Log n Sublineal Lineal n Log n Cuadrática Cúbica Polinomial Exponencial Factorial

Comportamiento de las funciones: Función n=10 n=100 1 log n 3 7 n 10 100 n log n 30 700 n2 10000 2n 1024 1033 n! 3628800 100!

Big-Oh Complexity

Complejidad de Algoritmos Un problema para el cual existe un algoritmo de solución de un orden polinomial para el peor-caso, es considerado factible o tratable. Un problema cuyo algoritmo de solución para el peor-caso, no es de orden polinomial, es llamado intratable. Un algoritmo que resuelva un problema intratable esta demostrado que tardara un largo tiempo en resolverlo en su peor-caso, aun para tamaños modestos de la entrada.

Big-Oh Complexity Problemas intratables Problemas factibles o tratables Big-Oh Complexity

Complejidad de Algoritmos Ciertos problemas son tan difíciles que no existen algoritmos que los resuelvan. Un programa para el que no existirá nunca un algoritmo que lo resuelva es llamado irresoluble (unsolvable) o no computable. Un gran número de problemas son reconocidos como irresolubles. Uno de los primeros problemas que se demostró son irresolubles es el Halting problem o problema de Paro: “Dado un programa arbitrario y un conjunto de entradas, ¿el programa eventualmente parará?”

Complejidad de Algoritmos Un número grande de problemas resolubles, mantienen un estado indeterminado; se considera que son intratables, pero esto no se ha podido demostrar para ninguno de ellos. La mayoría de estos problemas pertenecen a la clase de los NP-completos (Stephen Arthur Cook1 y las bases de vigilancia en el Golfo de México). Muchos problemas prácticos se han identificado como NP-completos. 1Cook formalizó el concepto de NP-completitud en un famoso artículo de 1971 titulado "The Complexity of Theorem Proving Procedures”.

Complejidad de Algoritmos Un ejemplo de programa NP-Completo es el siguiente: Dada una formula arbitraria de la lógica proposicional, verificar si existe una asignación de valores de verdad a sus variables, que la vuelva verdadera. Este es el llamado problema de satisfacibilidad.

Complejidad de Algoritmos Es sabido que si se llegara a construir un algoritmo de orden polinomial para un problema NP-completo, automáticamente todos los problemas NP-completos tendrían soluciones en tiempo polinomial. Como no se ha descubierto ningún algoritmo de tiempo polinomial para ninguno de ellos, entonces se conjetura que la clase de problemas NP-completos son intratables. ¡Un problema abierto de la computación!