Operaciones con conjuntos

Slides:



Advertisements
Presentaciones similares
Teoría de Conjuntos Dr. Rogelio Dávila Pérez
Advertisements

INSTITUTO TECNOLÓGICO DE MINATITLÁN
Teoría de Conjuntos Dr. Rogelio Dávila Pérez ITESM, Campus Guadalajara
Dra. Noemí L. Ruiz Limardo Revisado 2011 © Derechos Reservados
Razonamiento Matemático
Repaso de Conjuntos Conjuntos y subconjuntos
DEPARTAMENTO DE MATEMÁTICAS
TEORÍA DE CONJUNTOS.
TEÓRIA DE CONJUNTOS.
TEÓRIA DE CONJUNTOS 5º Profesor: LUIS GONZALO PULGARÍN R
INSTITUCION EDUCATIVA REPÚBLICA DE VENEZUELA
Matemáticas, juego,...fortuna: Este año me toca la lotería
Unidad II: Teoría de Conjuntos.
TEÓRIA DE CONJUNTOS Profesor: Rubén Alva Cabrera.
Relaciones de equivalencia
Universidad Cesar Vallejo
Taller matemático (Cálculo)
FENÓMENOS O EXPERIMENTOS
¿Qué es un conjunto? Un conjunto es una colección de objetos considerada como un todo. Los objetos de un conjunto son llamados elementos o miembros del.
SUCESOS Y SUS PROBABILIDADES
Factorización (productos notables)
CONJUNTOS.
UNIDAD 2 CONJUNTOS.
Teoría de conjuntos Un conjunto es una colección o clase de objetos bien definidos y diferenciables entre sí. Los conjuntos pueden ser finitos o infinitos.
ÍNDICE Conjuntos Partes de un conjunto. Operaciones.
   Conjuntos.
Funciones.
FUNDAMENTOS DE LA TEORÍA DE CONJUNTOS
Teoría de Conjuntos Prof. Carlos Coronel R..
CONTENIDO CONJUNTOS RELACIONES FUNCIONES CONJUNTOS.
Desigualdades lineales en una variable
Conceptos Básicos de Probabilidad
Funciones Psu Matemáticas 2012.
M A T R I C E S MATRICES matrices.
Conjuntos MATEMATICA.1ero.
TEÓRIA DE CONJUNTOS.
Curso de Teoría del Autómata
TEÓRIA DE CONJUNTOS.
Matrices: conceptos generales
INSTITUCION EDUCATIVA LAS FLORES
TEÓRIA DE CONJUNTOS Docente: Jesús Huaynalaya García.
TEORÍA DE CONJUNTOS Prof. Ofelia Nazario Bao.
BIENVENIDOS A: MATEMATICA DIVERTIDA (TEORIA DE CONJUNTOS) INICIO SALIR
Universidad César Vallejo
 En Pascal el Conjunto es un tipo de dato intrínseco llamado Set, mediante el cual se puede representar el estado, activo o inactivo, de una serie de.
CLASE 27 A  B =  ACB A  B = C A B A  B = A A B A  B = B A B.
TEÓRIA DE CONJUNTOS Profesor: Ing. Oscar Guaypatin Pico.
MATEMÁTICA BÁSICA CERO
Intervalos y Desigualdades
RELACION Y OPERACIÓN ENTRE CONJUNTOS
Capítulo 3: Conjuntos Autor: José Alfredo Jiménez Murillo.
LIC. JOSEPH RUITON RICRA
DIFERENCIA SIMÉTRICA DE CONJUNTOS Operaciones con Conjuntos
Teoría de Conjuntos.
INSTITUCION EDUCATIVA REPÚBLIC A DE VENEZUELA
Universidad Cesar Vallejo
COLEGIO VIRTUAL GERSAIN
PROBABILIDAD Y ESTADISTICA
TEÓRIA DE CONJUNTOS.
LOS NÚMEROS COMPLEJOS La unidad imaginaria i se ha definido de manera que: Conocida la existencia de números imaginarios tales como 2i, 5i, -13i, etc.,
Teoría de la Probabilidad
TEÓRIA DE CONJUNTOS 5º Profesor:
Nociones Inclusión Igualdad
Teoría de Conjuntos Dr. Rogelio Dávila Pérez
TEÓRIA DE CONJUNTOS.
U NIDAD 3 R ETÍCULOS, PARTICIONES Y CONGRUENCIAS M.C. Meliza Contreras González.
Ingeniería Industrial Ingeniería en Sistemas de Información
Universidad Cesar Vallejo ALFA-UCV Teoría de Conjuntos.
1 Ingeniería en Sistemas Matemática Discreta. 2 EJEMPLOS DE CONJUNTOS:  N: conjunto de los números naturales.N: conjunto de los números naturales. 
Transcripción de la presentación:

Operaciones con conjuntos La unión de los conjuntos A y B, es el conjunto de todos los elementos que pertenecen a A o a B o a ambos. Se denota la unión de A y B por A È B y se llama unión de A y B. x Î ( A È B) Û x Î A Ú x Î B.

Subconjunto Un subconjunto A de un conjunto B, es un conjunto que contiene algunos de los elementos de B (o quizá todos). Ejemplo:  A={ 0, 1, 2, 3, 5, 8 } y B={ 1, 2, 5 } Por lo tanto si B es un subconjunto de A se escribe B  ⊂ A. Si B no es subconjunto de A se indicará con una diagonal  ⊂

UNIVERSO O CONJUNTO UNIVERSAL El conjunto que contiene a todos los elementos a los que se hace referencia recibe el nombre de conjunto Universal, este conjunto depende del problema que se estudia, se denota con la letra U y algunas veces con la letra S (espacio muestral).

Conjunto nulo o vacío Es el conjunto que carece de elementos. Este conjunto se denotará por Ø o { }. Se observa que |Ø|= 0, pero {0} ¹ Ø. Además, Ø = {Ø}, pues {Ø} es un conjunto con un elemento: el conjunto nulo. Ejemplo: A ={1, 3, 5, 7, 9} = |A| = 5, |Ø |= 0.

Por ejemplo: Sean A={ 2, 4, 6 } y B={ 1, 3, 5, 7 } encontrar A∩B. A ∩B= { } El resultado de A∩B= { } muestra que no hay elementos entre las llaves, si este es el caso se le llamará conjunto vacío ó nulo y se puede representar como: A ∩B= Ø

Conjuntos ajenos Si la intersección de dos conjuntos es igual al conjunto vacío, entonces a estos conjuntos les llamaremos conjuntos ajenos, es decir: Si A∩B = Ø  entonces A y B son ajenos.

 La intersección de dos conjuntos A y B es el conjunto de los elementos que son comunes a A y a B, esto es, aquellos que pertenecen a A y que también pertenecen a B. Se denota la intersección de A y B por A Ç B y se lee "A intersección B". x Î (A Ç B) Û x Î A Ù x Î B.

El complemento de un conjunto A es el conjunto de todos los elementos que no pertenecen a A, es decir, el conjunto de todos los elementos que están en el Universal y no están en A. El complemento de A se denota por A'. x Î ¬A Û x Î 1 Ù x Ï A.

La diferencia dos conjunto A y B, es el conjunto de todos los elementos que pertenecen a A pero no B. La diferencia de A con B es llamado el Complemento de B con respecto a A. x Î (A - B) Û x Î A Ù x Ï B.

x Î (A Å B) Û (x Î A Ù x Ï B) Ú (x Ï A Ù x Î B).  La diferencia simétrica dos conjunto A y B, es el conjunto de todos los elementos que pertenecen a A o B, pero no a ambos. x Î (A Å B) Û (x Î A Ù x Ï B) Ú (x Ï A Ù x Î B).