REGRESION LINEAL En la búsqueda de mejoras o en la solución de problemas es necesario, frecuentemente, investigar la relación entre factores (o variables).

Slides:



Advertisements
Presentaciones similares
Tema 6: Regresión lineal.
Advertisements

Tema.9.Predicción y estimación. Concepto. Cálculo de la ecuación de regresión lineal. Modelo general lineal. Evaluación del modelo. Diagnóstico del modelo.
Regresión lineal simple
Regresión mínimo cuadrada (I)
REGRESION LINEAL SIMPLE
ESTRATEGIAS Y DISEÑOS AVANZADOS DE INVESTIGACIÓN SOCIAL
Pronósticos, Series de Tiempo y Regresión
ANÁLISIS EXPLORATORIO DE DATOS
Covarianza muestral Sean x1, x2, ..., xn e y1, y2, ..., yn dos muestras aleatorias independientes de observaciones de X e Y respectivamente. La covarianza.
PROPIEDADES ESTADÍSTICAS DE LOS ESTIMADORES
MODELO DE REGRESIÓN MÚLTIPLE
ESTRATEGIAS Y DISEÑOS AVANZADOS DE INVESTIGACIÓN SOCIAL
Econometria 2. Modelo de Regresión Lineal Simple
Regresión y correlación
Regresión lineal Es un modelo matemático para predecir el efecto de una variable sobre otra, ambas cuantitativas. Una variable es la dependiente y otra.
Regresión Lineal Simple
9 Regresión Lineal Simple
Regresión Linear Correlación de Pearson, r Regresión Múltiple Regresión Logística Regresión de Poisson.
Regresión y Correlación
Análisis de Correlación y de Regresión lineal simple
RELACIONES ENTRE VARIABLES
Distribuciones bidimensionales. Tablas de contingencia
Regresión Lineal Múltiple
Carla Cervantes. Cuando solo utilizamos una variable independiente para establecer diferentes grupos dentro de una muestra. Primeramente se explican los.
TIPOS DE MODELOS DE REGRESIÓN Y SUPUESTOS PARA EL MODELO A
CO 3321/22 Modelos Lineales Práctica 3 Consideraremos modelos de la forma: Observación=señal + ruido Estos modelos pueden escribirse en la forma: Y=X 
Curso de Bioestadística. ANOVA
Pronósticos, Series de Tiempo y Regresión
Modelo de regresión simple: Y =  1 +  2 X + u 1 Hemos visto que los coeficientes de regresión b 1 y b 2 son variables aleatorias. Estos, respectivamente,
Caso de regresión lineal simple: Relación entre población y número de nacimientos. Jorge Galbiati.
DERIVADO DE LOS COEFICIENTES DE REGRESIÓN LINEAL Y X Esta sequencia muestra cómo los coeficientes de regresión para un modelo de regresión lineal simple.
LOS COMPONENTES ALEATORIOS DE LOS COEFICIENTES DE REGRESIÓN
REGRESION LINEAL MULTIPLE: Introducción
Titular: Agustín Salvia
Introducción a la Inferencia Estadística
Estadística Descriptiva
Modelos Lineales CO Práctica 4 Comparación de Modelos Lineales Se desea comparar dos modelos de la forma: (1) y i =  0 +  1 x 1i  l x li.
LA RECTA DE REGRESIÓN CONTENIDOS:
Comparasi ó n de Regresión Lineales Capitulo 18. Los temas Regresión Lineal Comparando ecuaciones lineales Bondad de ajuste (Chi square) Tabla de contingencia.
Modelo Lineal Simple con Statgraphics para Windows.
UNIVERSIDAD DE GUADALAJARA C. U. C. E. I. Departamento de Madera Celulosa y Papel DETERMINACIÓN DEL EFECTO DEL MATERIAL DE ENVASE EN EL pH DE LA COCA COLA.
Estadística Aplicada a las Ciencias Políticas
CO-2124 Análisis de Varianza con Un Criterio de Clasificación En clases anteriores se deseaba determinar si existían diferencias entre las medias de dos.
Definición del Modelo de Regresión Simple Estimaciones por MCO Método de MCO Valores Esperados y Varianzas por MCO.
1 Y MODELO DE REGRESIÓN SIMPLE Suponemos que una variable Y es una función lineal de otra variable X, con parámetros desconocidos  1 y  2 que queremos.
PARA LA REGRESIÓN LINEAL SIMPLE
2009 M.P.Díaz1 Introducción a los Modelos Lineales Generalizados Continuación …. Algunos ejemplos de motivación.
Estadística II Regresión Lineal.
Titular: Agustín Salvia
Regresión Lineal Simple
Aplicaciones Estadísticas a las Finanzas Clase 1
REGRESION LINEAL SIMPLE. REGRESION LINEAL  En la búsqueda de mejoras o en la solución de problemas es necesario, frecuentemente, investigar la relación.
Regresión lineal simple Nazira Calleja
Unidad 4 Análisis de los Datos.
REGRESIÓN LINEAL SIMPLE
ANÁLISIS DE LA INFORMACIÓN La relación entre variables.
Modelos de regresión lineal
EPE MA 148 ESTADÍSTICA INFERENCIAL TEMA:
Germán Fromm R. 1. Objetivo Entender los diseños metodológicos predictivos 2.
REGRESIÓN LINEAL SIMPLE
RELACIÓN ENTRE UNA VARIABLE DEPENDIENTE Y UNA O MAS INDEPENDIENTES.
REGRESIÓN LINEAL SIMPLE. Temas Introducción Análisis de regresión (Ejemplo aplicado) La ecuación de una recta Modelo estadístico y suposiciones Estimación.
ANÁLISIS DE COVARIANZA En algunas circunstancias, un experimento está afectado por la intervención de un factor muchas veces imprevisible y que no puede.
Bioestadística Inferencia estadística y tamaño de muestra
METODO DE MAXIMA PENDIENTE
Análisis de Regresión. Introducción Importancia Principal Aplicación: Determinación relación Y = F(X 1, X 2,... X n )
REGRESION LINEAL SIMPLE
REGRESION LINEAL SIMPLE
REGRESION LINEAL SIMPLE
Transcripción de la presentación:

REGRESION LINEAL En la búsqueda de mejoras o en la solución de problemas es necesario, frecuentemente, investigar la relación entre factores (o variables). Para lo cual existen varias herramientas estadísticas, entre los que se encuentran el diagrama de dispersión, el análisis de correlación y el análisis de regresión. El análisis de regresión puede usarse para explicar la relación de un factor con otro(s). Para ello, son necesarios los datos, y estos pueden obtenerse de experimentos planeados, de observaciones de fenómenos no controlados o de registros históricos.

Regresión lineal simple Sean dos variables X y Y. Supongamos que se quiere explicar el comportamiento de Y con el de X. Para esto, se mide el valor de Y sobre un conjunto de n valores de X, con lo que se obtienen n parejas de puntos (X 1,Y 1 ), (X 2,Y 2 ),...,(X n,Y n ). A Y se le llama la variable dependiente o la variable de respuesta y a X se le conoce como variable independiente o variable regresora.

Supongamos que las variables X y Y están relacionadas linealmente y que para cada valor de X, Y es una variable aleatoria. Es decir, supongamos que cada observación de Y puede ser descrita por el modelo Y=ß 0 +ß 1 X+e donde e es un error aleatorio con media cero y varianza  2.

Ejemplo En una fábrica de pintura se desea investigar la relación entre la velocidad de agitación X y el porcentaje de impurezas en la pintura Y. Mediante un diseño experimental se obtienen los siguientes datos. VelocidadImpurezas

Regression Analysis ‑ Linear model: Y = a+bX ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ Dependent variable: PINTREG.impurezas Independent variable: PINTREG.veloc ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ Standard T Prob. Parameter Estimate Error Value Level ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ Intercept ‑ ‑ Slope ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ Analysis of Variance ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ Source Sum of Squares Df Mean Square F ‑ Ratio Prob. Level Model Residual ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ Total (Corr.) Correlation Coefficient = R ‑ squared = percent Stnd. Error of Est. =