BUENAS TARDES.

Slides:



Advertisements
Presentaciones similares
DISEÑO DE EXPERIMENTOS EXPERIMENTOS DE COMPARACIÓN SIMPLE
Advertisements

DSITRIBUCION T DE STUDENT.
ANOVA DE UN FACTOR.
MÉTODOS Y DISEÑOS DE INVESTIGACIÓN METODOLOGÍAS DE INVESTIGACIÓN
Tema 16: Contraste paramétrico de hipótesis I: Pruebas de contraste para un grupo. Pruebas de contraste para dos grupos: independientes o relacionados.
Tema 15. Contraste de hipótesis: Planteamiento de las hipótesis
Demostración de Asociación
PRUEBA DE HIPOTESIS Denominada también prueba de significación, tiene como objetivo principal evaluar suposiciones o afirmaciones acerca de los valores.
} LISSET BÁRCENAS MONTERROZA
Comprobación de diferencias entre medias
HIPOTESIS EN UN ESTUDIO
La prueba U DE MANN-WHITNEY
Universidad de Chile Facultad de Ciencias Químicas y Farmacéuticas
Prueba de Hipótesis La Prueba t Carlos B. Ruiz-Matuk.
METODOLOGÍA DE INVESTIGACIÓN Titular: Agustín Salvia
Problema de la medición en Psicología
Análisis de varianza Análisis de varianza de un factor
ANOVA Modelo I: Comparación entre medias
COEFICIENTE DE CORRELACIÓN PRODUCTO-MOMENTO DE PEARSON
Prueba de hipótesis Equivalencia entre la prueba de hipótesis y los intervalos de confianza Valor de probabilidad Valor de probabilidad unilateral Prueba.
Tests de hipótesis Los tres pasos básicos para testear hipótesis son
Clase 5 Hipótesis de diferencias de grupos
Capítulo III Análisis de varianza.
Clases 3 Pruebas de Hipótesis
(niveles o categorías)
Unidad VI: PRUEBAS DE HIPOTESIS
1 Planteamiento del problema ¿Tenemos los humanos la capacidad de percibir si nos miran desde atrás? O, más exactamente: ¿Es defendible que existen otras.
Curso de Bioestadística. ANOVA
Tema 17: Contraste paramétrico de hipótesis I: Pruebas de contraste para un grupo. Pruebas de contraste para dos grupos: independientes o relacionados.
INTERVALO DE CONFIANZA
DISTRIBUCIONES DE MUESTREO
Datos: Estadística.
Medidas de Dispersión.
Introducción La inferencia estadística es el procedimiento mediante el cual se llega a inferencias acerca de una población con base en los resultados obtenidos.
Universidad Nacional de Colombia Curso Análisis de Datos Cuantitativos.
Análisis Cuantitativo de Datos (Básico)
@ Angel Prieto BenitoMatemáticas 2º Bachillerato CS1 CONTRASTES DE HIPÓTESIS Tema 14 * 2º BCS.
Clase 4a Significancia Estadística y Prueba Z
MEDIDAS DE DISPERSIÓN. La dispersión es la variación en un conjunto de datos que proporciona información adicional y permite juzgar la confiabilidad de.
Pruebas de hipótesis.
PRUEBAS ESTADISTICAS NO PARAMETRICAS
Pruebas de hipótesis.
Varianza y Covarianza.
Estimación Diferencia de dos medias
@ Angel Prieto BenitoMatemáticas 2º Bachillerato CS1 TEMA 15 * CONTRASTES DE HIPÓTESIS MATEMÁTICAS A. CS II.
PARA LA REGRESIÓN LINEAL SIMPLE
Análisis de los Datos Cuantitativos
Capitulo 4 Análisis descriptivo inferencial: comparaciones múltiples
Regresión Lineal Simple
INTERVALOS DE CONFIANZA
ESTIMACIÓN DE PARÁMETROS
INTERVALO DE CONFIANZA
Prueba de Hipótesis Una hipótesis estadística es un supuesto que se establece sobre las características de una distribución poblacional El estudio se plantea.
PRUEBA DE HIPÓTESIS DE LA DISTRIBUCIÓN “Z” PARA DOS PROPORCIONES.
Capítulo 10 Análisis de los datos.
CONTRASTE DE HIPÓTESIS Dimensiones Largo275mm. 169 mm 2 Ancho175mm.49 mm 2 Alto175mm.49 mm 2 Peso16 Kg.1 Kg 2. SITUACIÓN PROBLEMA.
La naturaleza del control
INFERENCIA ESTADÍSTICA
UNIVERSIDAD CENTRAL DEL ECUADOR FACULTAD DE CIENCIAS ECONOMICAS INFERENCIA ESTADISTICA TEMA: ESTIMACION PUNTUAL, PROPIEDADES DE LAS ESTIMACIONES;
(niveles o categorías)
UNIDAD I.- Analisis 3.4 Prueba de Hipotesis.
TAMAÑO DE LA MUESTRA. Para definir el tamaño de la muestra se debe tener en cuenta los recursos disponibles y las necesidades del plan de análisis, el.
DISTRIBUCIÓN “t” DE STUDENT
MÁS DE DOS MUESTRAS Procedimientos paramétricos. Pruebas de diferencias entre más de dos muestras *Con cálculos diferentes de SC y gl, según el caso.
Tarea # 4 PRUEBAS DE HIPÓTESIS ESTADÍSTICAS. PRUEBA DE HIPÓTESIS Hipótesis es una aseveración de una población elaborado con el propósito de poner a prueba,
Yulieth ariza Villarreal Estadística II. Historia La distribución de Student fue descrita en 1908 por William Sealy Gosset. Gosset trabajaba en una fábrica.
1 REGRESIÓN CON VARIABLES DICOTÓMICAS TEMA 1 (CONTINUACIÓN)
ANALISIS DE VARIANZA.
DISTRIBUCIÓN “T” DE STUDENT MARCELA MENDIVELSO III SEMESTRE.
Evaluando los promedios de grupos distintos UNIDAD 7 1.
Transcripción de la presentación:

BUENAS TARDES

ANALISIS DE VARIANZA

Recordamos la fórmula de la varianza σ 2= Σ (X - M) 2 N - 1 La formula de la varianza ya nos es conocida es la desviación típica elevada al cuadrado. Es decir, se trata de una razón o quebrado con un numerador y un denominador (que ahora es N-1, y no N simplemente, porque se trata de una estimación de la varianza de la población). A este numerador y denominador de la varianza nos vamos a ir refiriendo por separado utilizando los nuevos términos, que por otra parte no son arbitrarios y nos ayudarán a entender cómo se analiza o descompone la varianza.

El numerador de la varianza o suma de cuadrados  La suma de las diferencias de todos los datos con respecto a la media, elevadas previamente al cuadrado [Σ(X-M)2] es el numerador de la varianza. A este numerador se le denomina Suma de Cuadrados y su símbolo habitual es SC. No es raro encontrarse con el símbolo SS, que significa lo mismo pero en inglés (Sum of Squares). La expresión Σ(X-M)2 también suele simbolizarse Σx2 (la equis minúscula, x, es símbolo frecuente de X- M), y también se utiliza a veces Σd2 (d = diferencia de cada puntuación individual con respecto a la media).

Finalidad del análisis de varianza El análisis de varianza lo vamos a utilizar para verificar si hay diferencias estadísticamente significativas entre medias cuando tenemos más de dos muestras o grupos en el mismo planteamiento. En estos casos no utilizamos la t de Student que solamente es un procedimiento válido cuando comparamos únicamente las medias de dos muestras. cuando tenemos más de dos muestras y comparamos las medias de dos en dos suben las probabilidades de error al rechazar la hipótesis de no diferencia porque queda suficientemente explicada por factores aleatorios (que también se denomina error muestral).

Una varianza grande indica que hay mucha variación entre los sujetos, que hay mayores diferencias individuales con respecto a la media; una varianza pequeña nos indica poca variabilidad entre los sujetos, diferencias menores entre los sujetos. La varianza cuantifica todo lo que hay de diferente entre los sujetos u observaciones. la varianza se puede descomponer en varianzas parciales y al descomponer la varianza le denominamos análisis de varianza. La varianza expresa variación, y si podemos descomponer la varianza, podemos aislar fuentes de variación

Por qué utilizamos el análisis de varianza en vez de la t de Student?

Cuando tenemos dos muestras y queremos comprobar si difieren significativamente (si proceden de la misma población con una única media) utilizamos la t de Student. Cuando tenemos más de dos grupos utilizamos el análisis de varianza: ¿No podríamos comparar todos los grupos de dos en dos con la t de Student? A primera vista parecería lo más lógico, sin embargo no se hace así por una serie de razones tales como:

1º La razón más importante (y suficiente) para no utilizar la t de Student con más de dos grupos es que, al hacer muchas comparaciones de dos en dos, aumenta la probabilidad de que algunas diferencias resulten significativas por azar y entonces cabe la posibilidad de afirmar que hay una diferencia (de no aceptar la hipótesis nula) cuando realmente no la hay.  2º Otra razón adicional es que una prueba estadística basada en todos los datos utilizados simultáneamente, es más estable que la prueba o análisis que parcializa los datos y no los examina todos juntos. El error típico (que expresa la variación en las medias que podemos encontrar en diversas muestras) es menor cuando el número de sujetos es mayor, como sucede cuando se analizan todos los datos de todos los grupos simultáneamente.

Qué comprobamos mediante el análisis de varianza: La relación que hay en la diferencia entre varianzas y la diferencia entre medias   Con la t de Student comprobamos si existe una diferencia estadísticamente significativa entre las medias de dos muestras o grupos; es decir, comprobamos si las dos medias difieren más de lo que consideramos normal cuando las muestras proceden de la misma población o, lo que es lo mismo, si las medias no difieren entre sí más de lo que es normal que difieran los sujetos entre sí.

Con el análisis de varianza comprobamos si existen diferencias estadísticamente significativas entre más de dos grupos, es decir, comprobamos si las diversas muestras podemos considerarlas muestras aleatorias de la misma población. Es el método apropiado cuando tenemos más de dos grupos en el mismo planteamiento; en vez de comparar las medias de dos en dos, utilizamos el análisis de varianza

Una dificultad inicial que suele presentar el estudio del análisis de varianza es el uso de términos nuevos, por eso es útil familiarizarse con estos términos ya desde el principio. Realmente los conceptos no son nuevos, solamente pueden resultar relativamente nuevos los términos para designarlos. Cuando se cae en la cuenta de que se trata de lo que ya sabemos, desaparece la dificultad.

ESTA EXPOSICION FUE REALIZADA POR: KAREN PAYARES JIMENEZ FABIAN NAVARRO

GRACIAS!......